计算机科学 ›› 2017, Vol. 44 ›› Issue (9): 243-249.doi: 10.11896/j.issn.1002-137X.2017.09.046
曾安,高成思,徐小强
ZENG An, GAO Cheng-si and XU Xiao-qiang
摘要: 针对传统协同过滤技术在现实应用中遇到的数据稀疏性问题和局限性,充分挖掘用户评分特性,提出融合时间因素和用户评分特性的协同过滤算法(CF-TP)。引入用户偏好模型,将用户-项目评分矩阵转化为用户-项目偏好得分矩阵,以降低用户评分习惯差异带来的影响。在预测用户对项目的偏好得分时,充分考虑用户之间的非对称影响度,根据用户兴趣随时间的变化引入时间权重函数,以提高top-N推荐的准确率。基于HetRec2011和MovieLens1M数据集的实验结果表明,相对于目前比较流行的算法,所提算法在推荐结果的准确率、召回率、F1值上均有较大的提升,有效提高了推荐系统的推荐质量。
[1] KHUSRO S,ALI Z,ULLAH I.Recommender Systems:Issues,Challenges,and Research Opportunities[M]∥Information Scien-ce and Applications (ICISA) 2016.Springer Singapore,2016. [2] KARATZOGLOU A,HIDASI,Bal,et al.RecSys’16 Workshop on Deep Learning for Recommender Systems (DLRS)[C]∥ACM Conference on Recommender Systems.ACM,2016:415-416. [3] MENG X W,LIU S D,ZHANG Y J,et al.Research on Social Recommender Systems[J].Journal of Software,2015,26(6):1356-1372.(in Chinese) 孟祥武,刘树栋,张玉洁,等.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372. [4] VAIRACHILAI S,KAVITHADEVI M K,RAJA M.Allevia-ting the Cold Start Problem in Recommender Systems Based on Modularity Maximization Community Detection Algorithm[J].Circuits and Systems,2016,7(8):1268-1279. [5] HUANG C G,YIN J,WANG J,et al.Uncertain Neighbors’Collaborative Filtering Recommendation Algorithm[J].Chinese Journal of Computers,2010,33(8):1369-1377.(in Chinese) 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. [6] PIRASTEH P,HWANG D,JUNG J E.Weighted SimilaritySchemes for High Scalability in User-Based Collaborative Filtering[J].Mobile Networks & Applications,2015,20(4):497-507. [7] LEE J,LEE D,LEE Y C,et al.Improving the accuracy of top- N,recommendation using a preference model[J].Information Sciences,2016,348(c):290-304. [8] ADOMAVICIUS G,TUZHILIN A.Context-Aware Recommender Systems[C]∥Recommender Systems HandbookSpringer US.2011:217-253. [9] KARAHODZA B,DONKO D.Feature enhanced time-awarere-commender system[C]∥Xxv International Conference on Information,Communication and Automation Technologies.2015:1-6. [10] XIA C,JIANG X,LIU S,et al.Dynamic item-based recommendation algorithm with time decay[C]∥International Confe-rence on Natural Computation(Icnc 2010).Yantai,Shandong,China,2010:242-247. [11] KARAHODZA B,SUPIC H,DONKO D.An approach to design of time-aware recommender system based on changes in group user’s preferences[C]∥X International Symposium on Telecommunications.2014:1-4. [12] ZHANG Y C,CHEN C.A Collaborative Filtering Algorithm Based on Time Period Partition[C]∥Third International Symposium on Intelligent Information Technology and Security Informatics.IEEE Computer Society,2010:777-780. [13] CREMONESI P,KOREN Y,TURRIN R.Performance ofrecommender algorithms on top-n recommendation tasks[C]∥ACM Conference on Recommender Systems(Recsys 2010).Barcelona,Spain,2010:39-46. [14] JIN R,SI L,ZHAI C X,et al.Collaborative filtering with decoupled models for preferences and ratings[C]∥ACM CIKM International Conference on Information and Knowledge Management.New Orleans,Louisiana,Usa,2003:309-316. [15] ADIBI P,LADANI B T.A collaborative filtering recommender system based on user’s time pattern activity[C]∥Information and Knowledge Technology.2013:252-257. [16] BOBADILLA J,ORTEGA F,H ERNANDO A,et al.A collaborative filtering approach to mitigate the new user cold start problem[J].Knowledge-Based Systems,2012,26:225-238. |
No related articles found! |
|