计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 129-132.doi: 10.11896/j.issn.1002-137X.2017.6A.029

• 智能计算 • 上一篇    下一篇

基于局部比值法的强弦图带权控制集问题的线性时间算法

张修军,吴璞,杨洪,邵泽辉   

  1. 成都学院成都大学信息科学与工程学院 成都610106;成都学院成都大学模式识别与智能信息处理四川省高校重点实验室 成都610106,成都学院成都大学信息科学与工程学院 成都610106,成都学院成都大学信息科学与工程学院 成都610106;成都学院成都大学模式识别与智能信息处理四川省高校重点实验室 成都610106,成都学院成都大学信息科学与工程学院 成都610106;成都学院成都大学模式识别与智能信息处理四川省高校重点实验室 成都610106
  • 出版日期:2017-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61309015),成都学院(成都大学)模式识别与智能信息处理四川省高校重点实验室开放基金项目,成都大学·龙泉驿区汽车创意设计试点区项目(2015-CX00-00010-ZF)资助

Linear-time Algorithm for Weighted Domination Problem of Strongly Chordal Graph Based on Local Ratio Method

ZHANG Xiu-jun, WU Pu, YANG Hong and SHAO Ze-hui   

  • Online:2017-12-01 Published:2018-12-01

摘要: 一个无向图G=(V,E)的顶点子集DV是控制集,当且仅当任意一个顶点v∈V-D至少与一个顶点u∈D相邻。图G中的顶点数最少的控制集称为最小控制集,带权控制集问题是求解给定的顶点带权的无向图G的权最小的控制集。结合强弦图的性质,给出基于局部比值法的线性时间算法来求解强弦图带非负权的控制集问题,同时给出了算法复杂度的证明。

关键词: 局部比值法,强弦图,带权控制集,线性时间算法

Abstract: In an undirected graph G=(V,E),DV is dominating set if and only if any vertex v∈V-D adjacent to at least one vertex u∈D.The minimum weight dominating set problem consists of finding a dominating set of a graph G with minimum weight.By applying with the properties of strongly chordal graph,a linear-time algorithm based on local ratio method for the minimum weight dominating set problem on strongly chordal graph was proposed.We also provi-ded the proof of the time complexity of the proposed algorithm.

Key words: Local ratio method,Strongly chordal graph,Weighted dominating set,Linear time algorithm

[1] ROSE D J,TARJAN R E.Algorithmic Aspects of Vertex Elimination on Directed Graphs[J].Siam Journal on Computing,1975,34(1):245-254.
[2] FARBER M.Characterizations of strongly chordal graphs[J].Discrete Mathematics,1983,43(2/3):173-189.
[3] UEHARA R.Linear Time Algorithms on Chordal Bipartite and Strongly Chordal Graphs[M]∥Automata,Languages and Programming.Springer Berlin Heidelberg,2002:993-1004.
[4] FARBER M.Applications of LP duality to problems involving independence and domination[D].Rutgers University,1982.
[5] BOOTH K S,JOHNSON J H.Dominating sets in chordalgraphs[J].SIAM Journal on Computing,1982,11(1):191-199.
[6] FARBER M.Independent domination in chordal graphs[J].Ope-rations Research Letters,1982,1(4):134-138.
[7] BROIN M W,LOWE T J.A dynamic programming algorithm for covering problems with (greedy) totally balanced constraint matrices[J].SIAM Journal on Algebraic Discrete Methods,1986,7(3):348-357.
[8] CHANG G J.Labeling algorithms for domination problems insun-free chordal graphs[J].Discrete Applied Mathematics,1988,22(1):21-34.
[9] CHANG G J,NEMHAUSER G L.The k-domination and k-stability problems on sun-free chordal graphs[J].SIAM Journal on Algebraic Discrete Methods,1984,5(3):332-345.
[10] CHANG G J,NEMHAUSER G L.Covering,packing and genera-lized perfection[J].SIAM Journal on Algebraic Discrete Me-thods,1985,6(1):109-132.
[11] Farber M.Domination,independent domination,and duality in strongly chordal graphs[J].Discrete Applied Mathematics,1984,7(2):115-130.
[12] HOFFMAN A J,KOLEN A W J,Sakarovitch M.Totally-ba-lanced and greedy matrices[J].SIAM Journal on Algebraic Discrete Methods,1985,6(4):721-730.
[13] KRATSCH D.Finding dominating cliques efficiently,in strongly chordal graphs and undirected path graphs[J].Discrete Mathematics,1990,86(1-3):225-238.
[14] WIMER T V.Linear algorithms for the dominating cycle problems in series-parallel graphs,2-trees and Halin graphs[J].Congressus Numerantium,1987,56.
[15] GAREY M R,GRAHAM R L,ULLMAN J D.Worst-CaseAnalysis of Memory Allocation Algorithms[C]∥ACM Symposium on Theory of Computing.Denver,Colorado,USA,1972:93-94.
[16] GAREY M R,JOHNSON D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].W.H.Freeman and Company Ltd,1979.
[17] ROSENKRANTZ D J,STEARNS R E,LEWIS P M.An analysis of several heuristics for thetraveling salesman problem[J].Siam Journal on Computing,1977,6(3):563-581.
[18] BAR-YEHUDA R,EVEN S.A linear-time approximation algorithm for the weighted vertex cover problem[J].Journal of Algorithms,1981,2(2):198-203.
[19] 堵丁柱.近似算法的设计与分析[M].北京:高等教育出版社,2011.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!