计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 511-517.

• 软件工程与数据库技术 • 上一篇    下一篇

时态实体依赖关系与度量方法研究

傅妤婧, 张俊, 王毅恒   

  1. 大连海事大学 辽宁 大连116000
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 傅妤婧(1992-),女,硕士生,主要研究方向为时态数据库理论与应用,E-mail:824437084@qq.com
  • 作者简介:张 俊(1971-),男,博士,教授,主要研究方向为数据库理论与技术、数据库信息检索、智能信息处理和语义网;王毅恒(1993-),男,硕士生,主要研究方向为时态数据库理论与应用。

Research on Temporal Entity Dependencies Relation and Measurement Method

FU Yu-jing, ZHANG Jun, WANG Yi-heng   

  1. Dalian Maritime University,Dalian,Liaoning 116000,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 实体间存在各种各样的依赖关系,尤其是在软件开发过程中,软件实体间的依赖关系对软件的变更影响分析以及风险分析等都具有重大影响。依赖图作为最常用的依赖关系表示方法,其节点与边的定义与属性计算不尽相同,且大部分方法中并没有考虑到节点与边的时态属性。针对时态实体依赖图,文中系统地提出了时态实体依赖关系的形式化定义并分析了其特性,然后分析了时态实体依赖图的节点中心性、节点重要性、节点依赖度和边的重要性等4个度量指标,同时,针对MAVEN数据集分析了上述各个指标随时间变化的规律。

关键词: 度量, 时态实体依赖图, 依赖关系

Abstract: All kinds of dependencies exist among entities.Especially in the process of software development,the depen-dencies between software entities has a big impact on the impact analysis of software and risk analysis.Dependency graph is the most commonly used dependency representation method,the definition of nodes and edges is different from attribute comptation,while the temporal properties of nodes and edges are seldom taken into account in existing depen-dency graph methods.This paper presented formal definition and analysis of temporal characteristics of temporal depen-dencies,and also analyzed the importance of four measures including node center,node importance,node dependency and edge importance.Finally,test dataset was extracted form MAVEN data,and experimental results showregulation of indictors varying with the time.

Key words: Dependency relation, Measurement, Temporal entity dependency graph

中图分类号: 

  • TP301
[1]王炜,李彤,何云,等.一种软件演化活动波及效应混合分析方法[J].计算机研究与发展,2016,53(3):503-516.
[2]STEVENS W,MYERS G,CONSTANTINE L.Structured design[J].Systems Journal ,1974,13(2):115-139.
[3]VIEIRA M,RICHARDSON D.Analyzing dependencies in large component-based systems[C]∥17th IEEE International Confe-rence on Automated Software Engineering.ASE 2002:241-244.
[4]欧阳,胡顺仁,蒋西明.对象类之间依赖关系度量分析[J].计算机工程与应用,2004,40(25):81-83.
[5]NORMAN W,ROSS H,SCOTT H.Dependency analysis tools reusable components for software maintenance[C]∥Conference on Software Maintenance.2015:126-131.
[6]易彤.面向UML模型的依赖性分析及应用的研究[D].南昌:江西财经大学,2006.
[7]LEE M,OFFUTT J,ALEXANDER R.Algorithmic Analysis of the Impacts of Changes to Object-oriented Software[C]∥34th International Conerence on Technology of Object-Oriented Languages and Systems.2000:61-70.
[8]ARIAS T B C,SPEK P V D,AVGERIOU P.A practice-driven systematic review of dependency analysis solutions [J].Empirical Software Engineering,2011,16(5):544-586.
[9]WILDE N,HUITT R,HUITT S.Dependency analysis tools reu-sable components for software maintenance[C]∥Conference on Software Maintenance.1989:126-131.
[10]胡顺仁,陈伟民,廖昌荣,等.基于UML类图的类之间依赖关系图论问题研究[J].计算机工程,2006,32(12):1-2.
[11]郭婧,吴军华.基于程序依赖图的克隆检测及改进[J].计算机工程与设计,2012,33(2):595-600.
[12]LI B X,WANG Y F,ZHANG Y Z,et al.An Approach of Static Coarse-Grained Slice Based on Simlified System Dependence Graph[J].软件学报,2001,12(2):204-211.
[13]谭毅,朱平,李必信,等.一个分层切片工具模型[J].软件学报,2001,28(6):1810-1817.
[14]成小芹,王一莉.基于UML类图的软件可测试性分析方法研究[J].计算机工程与设计,2011,32(4):1326-1329.
[15]卢田毅.基于依赖观察矩阵的软件故障定位技术研究[D].大连:大连海事大学,2013.
[16]WANG L X,YANG J,WAN R X,et al.Reducing combinatorial test suite based on tree-model by using input parameters relationships[J].计算机应用研究,2010,27(3):928-932.
[17]WANG R,HUANG R,QU B.Network-based analysis of software change propagation[J].The Scientific World Journal,2014(2014):237-243.
[18]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2010,27(2):429-433.
[19]姚静,赵彤洲.复杂社会网络节点重要性研究[J].计算机与数字工程,2016,44(1):80-82.
[20]ABBASI A,ALTMANN J,HOSSAIN L.Identifying the effects of co-authorship networks on the performance of scholars:a correlation and regression analysis of performance measures and social network analysis measures[J].Journal of Informetrics,2011,5(4):594-607.
[21]http://mvnrepository.com.
[1] 姜胜腾, 张亦弛, 罗鹏, 刘月玲, 曹阔, 赵海涛, 魏急波.
语义通信系统的性能度量指标分析
Analysis of Performance Metrics of Semantic Communication Systems
计算机科学, 2022, 49(7): 236-241. https://doi.org/10.11896/jsjkx.211200071
[2] 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真.
一种基于支持向量机的主动度量学习算法
Active Metric Learning Based on Support Vector Machines
计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034
[3] 王宇飞, 陈文.
基于DECORATE集成学习与置信度评估的Tri-training算法
Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment
计算机科学, 2022, 49(6): 127-133. https://doi.org/10.11896/jsjkx.211100043
[4] 杨杏丽.
分类学习算法的性能度量指标综述
Survey for Performance Measure Index of Classification Learning Algorithm
计算机科学, 2021, 48(8): 209-219. https://doi.org/10.11896/jsjkx.200900216
[5] 冯霞, 胡志毅, 刘才华.
跨模态检索研究进展综述
Survey of Research Progress on Cross-modal Retrieval
计算机科学, 2021, 48(8): 13-23. https://doi.org/10.11896/jsjkx.200800165
[6] 王辉, 朱国宇, 申自浩, 刘琨, 刘沛骞.
基于用户偏好和位置分布的假位置生成方法
Dummy Location Generation Method Based on User Preference and Location Distribution
计算机科学, 2021, 48(7): 164-171. https://doi.org/10.11896/jsjkx.200800069
[7] 张同明, 张宁.
股票市场投资者情绪指数研究综述
Review of Research on Investor Sentiment Index in Stock Market
计算机科学, 2021, 48(6A): 143-150. https://doi.org/10.11896/jsjkx.201000016
[8] 郑小萌, 高猛, 滕俊元.
航天器软件缺陷预测数据集构建方法研究
Research on Construction Method of Defect Prediction Dataset for Spacecraft Software
计算机科学, 2021, 48(6A): 575-580. https://doi.org/10.11896/jsjkx.200900133
[9] 黄铭, 孙林夫, 任春华, 吴奇石.
改进KNN的时间序列分析方法
Improved KNN Time Series Analysis Method
计算机科学, 2021, 48(6): 71-78. https://doi.org/10.11896/jsjkx.200500044
[10] 张岩金, 白亮.
一种基于符号关系图的快速符号数据聚类算法
Fast Symbolic Data Clustering Algorithm Based on Symbolic Relation Graph
计算机科学, 2021, 48(4): 111-116. https://doi.org/10.11896/jsjkx.200800011
[11] 刘胜久, 李天瑞, 谢鹏, 刘佳.
带权图的多重分形度量
Measure for Multi-fractals of Weighted Graphs
计算机科学, 2021, 48(3): 136-143. https://doi.org/10.11896/jsjkx.200700159
[12] 王焘, 张树东, 李安, 邵亚茹, 张文博.
一种面向异常传播的微服务故障诊断方法
Anomaly Propagation Based Fault Diagnosis for Microservices
计算机科学, 2021, 48(12): 8-16. https://doi.org/10.11896/jsjkx.210100149
[13] 梁伟, 段晓东, 徐健锋.
基于差异性度量的基础聚类三支过滤算法
Three-way Filtering Algorithm of Basic Clustering Based on Differential Measurement
计算机科学, 2021, 48(1): 136-144. https://doi.org/10.11896/jsjkx.200700213
[14] 余航, 魏炜, 谭征, 刘惊雷.
基于信任系统的条件偏好协同度量框架
Contextual Preference Collaborative Measure Framework Based on Belief System
计算机科学, 2020, 47(4): 74-84. https://doi.org/10.11896/jsjkx.190600152
[15] 李鑫超, 李培峰, 朱巧明.
一种基于改进向量投影距离的知识图谱表示方法
Knowledge Graph Representation Based on Improved Vector Projection Distance
计算机科学, 2020, 47(4): 189-193. https://doi.org/10.11896/jsjkx.190300024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!