计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 248-252.doi: 10.11896/jsjkx.191200090

• 计算机图形学&多媒体 • 上一篇    下一篇

基于S-HOG的遥感图像舰船目标检测

丁荣莉, 李杰, 张曼, 刘艳丽, 伍伟   

  1. 上海航天技术研究院 上海 201109
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 丁荣莉(1540352640@qq.com)
  • 基金资助:
    国家重点研发计划(2017YFB0802000)

Ship Target Detection in Remote Sensing Image Based on S-HOG

DING Rong-li, LI Jie, ZHANG Man, LIU Yan-li, WU Wei   

  1. Shanghai Academy of Spaceflight Technology,Shanghai 201109 China
  • Online:2020-11-15 Published:2020-11-17
  • About author:DING Rong-li,born in 1992,master,engineer.Her main research direction is remote sensing image processing.
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFB0802000).

摘要: 随着高分辨率卫星遥感成像技术的不断发展,可见光遥感图像舰船目标检测成为热门课题,其在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义。针对遥感图像中的舰船检测易受云雾、波浪、岛屿等因素干扰导致虚警率高的问题,提出了基于舰船方向梯度直方图(Ship Histagram of Oriented Gradient,S-HOG)特征的舰船鉴别算法。首先利用异常点检测提取目标候选区域得到可疑目标切片,然后统计其S-HOG特征剔除虚警,从而有效提取真正的舰船目标。实验结果表明,所提算法能在保证高检测率的同时显著降低虚警率,抗干扰能力强,鲁棒性高。

关键词: 感兴趣区域, 舰船方向梯度直方图, 舰船检测, 遥感图像, 异常点检测

Abstract: With the continuous development of high-resolution satellite remote sensing imaging technology,ship target detection based on visible remote sensing image has become a hot topic,which is of great strategic significance in military fields such as warship detection,precise guidance,and civilian fields such as sea search and rescue,fishing vessel monitoring,etc.Aiming at the problem that ship detection in remote sensing image is easy to be interfered by cloud,wave,island and other factors,which leads to high false alarm rate,a ship identification algorithm based on the characteristics of ship histogram of oriented gradient (S-HOG) is proposed.Firstly,the candidate region of the target is extracted by abnormal point detection to get the suspicious target slice,and then the S-HOG feature is counted to eliminate the false alarm,so as to effectively extract the real ship target.Experimental results show that the algorithm can significantly reduce the false alarm rate while ensuring high detection rate,and has strong anti-interference ability and high robustness.

Key words: Abnormal point detection, Remote sensing image, Ship detection, Ship histogram of oriented gradient, Target candidate region

中图分类号: 

  • TP751
[1] CHEN L,WANG Z R,HAN Z,et al.Ship target detection and recognition method based on visible light remote sensing image [J].Science & Technology Review,2017,35(20):77-85.
[2] LIN Y D.Research on Object Detection Algorithm of OpticalRemote Sensing Image under Complex Background [D].Southwest Jiaotong University,2017.
[3] WANG Y Q,MA L,TIAN Y.Overview of Ship Target Detection and Recognition in Optical Remote Sensing Images [J].Journal of Automation,2011,37(9):1029-1039.
[4] TONG S,KANG S,WU X,et al.A ship target automatic detec-tion method for high-resolution remote sensing[C]//IGARSS-2016.2016:1258-1261.
[5] YANG G,LI B,JI S,et al.Ship detection from optical satellite images based on sea surface analysis[J].IEEE Geoscience & Remote SensingLetters,2013,11(3):641-645.
[6] SHI P.Ship target automatic detection technology based on optical remote sensing image [D].University of Science and Technology of China,2010.
[7] AN Y,WANG X F,XIA X Z,et al.Ship target detection in optical remote sensing image of naval battlefield [J].Wuhan University Journal (Engineering Science),2015,48(4):568-573.
[8] ZHAO C H,LUAN S J.Phase detection of ship target based on optical remote sensing image [J].Journal of Shenyang University (Natural Science Edition),2015,27(5):369-375.
[9] GUO C L,MA Q,ZHANG L M.Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform [C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,AL,USA,2008:23-28.
[10] XU F.Research on key technologies for automatic detection of sea surface targets in visible light remote sensing images[D].University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechaincs and Physics,Chinees Academy of Sciences),2018.
[11] JI X F,QIN N L.Design and implementation of multi-target detection and recognition algorithm for optical remote sensing ima-ge [J].Journal of Computer Applications,2015,35(11):3302-3307.
[12] ZHU C R,ZHOU H,WANG R S,et al.A novel hierarchicalmethod of ship detection from spaceborne optical image based on shape and texture features [J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3446-3456.
[13] QI S,MA J,LIN J,et al.Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J].IEEE Geo-science & Remote Sensing Letters,2015,12(7):1451-1455.
[14] YIN Y,HUANG H,ZHANG Z X.Research on Ship Target Detection Technology Based on Optical Remote Sensing Images [J].Computer Science,46(3):88-93.
[15] PENG J T.Research on ship target detection technology of optical remote sensing image [D].Shanghai:Donghua University,2017.
[16] GAO L N,BI F K,LONG T,et al.A sea surface ship detection algorithm for optical remote sensing images [J].Journal of Tsi-nghua University(Science and Technology),2011,51(1):105-110.
[1] 王坤姝, 张泽辉, 高铁杠.
基于Hachimoji DNA和QR分解的遥感图像可逆隐藏算法
Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition
计算机科学, 2022, 49(8): 127-135. https://doi.org/10.11896/jsjkx.210700216
[2] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[3] 陈贵强, 何军.
自然场景下遥感图像超分辨率重建算法研究
Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene
计算机科学, 2022, 49(2): 116-122. https://doi.org/10.11896/jsjkx.210700095
[4] 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷.
融合改进密集连接和分布排序损失的遥感图像检测
Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss
计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001
[5] 颜军, 冯素云, 鹿琳琳, 王庆, 蔡明祥.
基于目标多特征的SAR影像舰船检测优化算法
Optimization Algorithm of Ship Detection Based on Multi-feature in SAR Images
计算机科学, 2021, 48(6A): 132-136. https://doi.org/10.11896/jsjkx.200700180
[6] 张曼, 李杰, 朱新忠, 沈霁, 成昊天.
基于改进DCGAN算法的遥感数据集增广方法
Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm
计算机科学, 2021, 48(6A): 80-84. https://doi.org/10.11896/jsjkx.200700185
[7] 袁星星, 吴秦.
基于显著性特征和角度信息的遥感图像目标检测
Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information
计算机科学, 2021, 48(4): 174-179. https://doi.org/10.11896/jsjkx.191200027
[8] 朱戎, 叶宽, 杨博, 谢欢, 赵蕾.
基于改进DeeplabV3+的地物分类方法研究
Feature Classification Method Based on Improved DeeplabV3+
计算机科学, 2021, 48(11A): 382-385. https://doi.org/10.11896/jsjkx.201100184
[9] 赵佳琦, 王瀚正, 周勇, 张迪, 周子渊.
基于多尺度与注意力特征增强的遥感图像描述生成方法
Remote Sensing Image Description Generation Method Based on Attention and Multi-scale Feature Enhancement
计算机科学, 2021, 48(1): 190-196. https://doi.org/10.11896/jsjkx.200600076
[10] 刘振鹏, 苏楠, 秦益文, 卢家欢, 李小菲.
FS-CRF:基于特征切分与级联随机森林的异常点检测模型
FS-CRF:Outlier Detection Model Based on Feature Segmentation and Cascaded Random Forest
计算机科学, 2020, 47(8): 185-188. https://doi.org/10.11896/jsjkx.190600162
[11] 张曼, 李杰, 丁荣莉, 成昊天, 沈霁.
基于改进YOLO-V2算法的遥感图像目标检测技术研究
Remote Sensing Image ObJect Detection Technology Based on Improved YOLO-V2 Algorithm
计算机科学, 2020, 47(6A): 176-180. https://doi.org/10.11896/JsJkx.191100206
[12] 刘俊琦, 李智, 张学阳.
基于视觉显著性的海面船只候选区域检测方法
Candidate Region Detection Method for Maritime Ship Based on Visual Saliency
计算机科学, 2020, 47(6A): 237-241. https://doi.org/10.11896/JsJkx.191000196
[13] 刘俊琦,李智,张学阳.
可见光遥感图像海面目标检测技术综述
Review of Maritime Target Detection in Visible Bands of Optical Remote Sensing Images
计算机科学, 2020, 47(3): 116-123. https://doi.org/10.11896/jsjkx.190300102
[14] 祝文韬, 谢宝蓉, 王琰, 沈霁, 朱浩文.
光学遥感图像中的飞机目标检测技术研究综述
Survey on Aircraft Detection in Optical Remote Sensing Images
计算机科学, 2020, 47(11A): 165-171. https://doi.org/10.11896/jsjkx.190500176
[15] 凌晨, 张鑫彤, 马雷.
基于Mask R-CNN算法的遥感图像处理技术及其应用
Remote Sensing Image Processing Technology and Its Application Based on Mask R-CNN Algorithms
计算机科学, 2020, 47(10): 151-160. https://doi.org/10.11896/jsjkx.190900119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!