计算机科学 ›› 2020, Vol. 47 ›› Issue (6): 230-235.doi: 10.11896/jsjkx.190400164
包峻波, 闫光辉, 李俊成
BAO Jun-bo, YAN Guang-hui, LI Jun-cheng
摘要: 社交网络已成为现代社会人们交往的重要形式,社交网络中的信息传播调控机制已成为当前研究领域的热点。考虑到社会中信息真伪的不确定性,文中引入博弈论(game theory)和社会加强效应(social strengthening effect)精确刻画信息在传播过程中的扩散概率,突出节点在信息传播中的个体差异,从博弈的角度考虑在不同的真假消息背景下,不同传播概率对节点传播情况的影响,结合非完全信息博弈刻画基础传播概率,根据社会加强效应对基础传播概率进行调整,设计并研究了基于非完全信息博弈的SIR传播模型,并基于小世界模型、无标度模型与实际网络数据集进行仿真,从网络模型类型、网络大小、传播概率等方面进行仿真实验。实验结果表明,提出的传播模型丰富了社交网络消息传播控制与免疫的研究技术,社会加强效应有较好的促进传播效果。
中图分类号:
[1]马知恩.传染病动力学的数学建模与研究[M].北京:科学出版社,2004:3-15. [2]KERMACK W O,MCKENDRICK A G.Contributions to the mathematical theory of epidemics.II.The problem of endemicity[J].Bulletin of Mathematical Biology,1991,53(1/2):57-87. [3]AMARAL M A,ARENZON J J.Rumor propagation meets skepticism:A parallel with zombies[J].EPL (Europhysics Letters),2018,124(1):1-6. [4]PASTOR-SATORRAS R,VESPIGNANI A.Epidemic dynamics and endemic states in complex networks[J].Physical Review E,2001,63(6):1-9. [5]DALEY D J,KENDALL D G.Stochastic Rumours[J].Ima Journal of Applied Mathematics,1965,1(1):42-55. [6]GRASSLY N C,FRASER C.Mathematical models of infectious disease transmission[J].Nature Reviews Microbiology,2008,6(6):477-487. [7]ZHANG Y C,LIU Y,ZHANG H F,et al.The research of information dissemination model on online social network[J].Acta Physica Sinica,2011,60(5):050501. [8]ZHANG W,YANQING Y,HANLIN T.Improved SI Model for Information Dissemination-Information Diffusion Model Based on Social Network[C]//Proceedings of the 2012 International Conference of MCSA.2013:145-150. [9]LV L Y,CHEN D B,ZHOU T.The small world yields the most effective information spreading[J].New Journal of Physics,2011,13(12):123005. [10]PÉREZ-RECHE F J,LUDLAM J J,TARASKIN S N.Synergy in spreading processes:From exploitative to explorative foraging strategies[J].Physical Review Letters,2011,106(21):1-16. [11]NEWMAN M E J.Threshold Effects for Two Pathogens Spreading on a Network[J].Physical Review Letters,2005,95(10):108701. [12]NIAN F,DANG Z.Message propagation in the network based on node credibility[J].International Journal of Modern Physics B,2018,32(9):1850106. [13]ULLAH F,LEE S.Community clustering based on trust modeling weighted by user interests in online social networks[J].Chaos Solitons & Fractals,2017,103:194-204. [14]LI S W,JIN C,GUO Y G.Propagation Model of Mobile Phone Bluetooth Virus Based on Mean-filed Theory[J].Computer Engineering,2012,38(7):93-95. [15]谢识予.经济博弈论[M].上海:复旦大学出版社,2002:3-4. [16]王元卓.社交网络演化计算:模型、方法与案例[M].北京:清华大学出版社,2018:73-93. [17]THEODOROS S,GEORGE O,THEO T,et al.Game Theoretic Approach for Cost-Benefit Analysis of Malware Proliferation Prevention[C]//28th Security and Privacy Protection in Information Processing Systems (SEC).Auckland,New Zealand,2013:28-41. [18]GUO D W,WU Y N,ZOU Y,et al.Simulation and Modeling of Non-rational Game based Public Opinion Spread[J].Act Auto Matica Sinica,2014,40(8):1721-1732. [19]张维迎.博弈论与信息经济学[M].上海:上海人民出版社,2016:26-31. [20]ZACHARY W W.An Information Flow Model for Conflict and Fission in Small Groups[J].Journal of Anthropological Research,1977,33(4):452-473. [21]KUMAR S,SPEZZANO F,SUBRAHMANIAN V S,et al.Edge Weight Prediction in Weighted Signed Networks.[C]//IEEE International Conference on Data Mining (ICDM).2016:221-230. |
[1] | 姜洋洋, 宋丽华, 邢长友, 张国敏, 曾庆伟. 蜜罐博弈中信念驱动的攻防策略优化机制 Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game 计算机科学, 2022, 49(9): 333-339. https://doi.org/10.11896/jsjkx.220400011 |
[2] | 袁唯淋, 罗俊仁, 陆丽娜, 陈佳星, 张万鹏, 陈璟. 智能博弈对抗方法:博弈论与强化学习综合视角对比分析 Methods in Adversarial Intelligent Game:A Holistic Comparative Analysis from Perspective of Game Theory and Reinforcement Learning 计算机科学, 2022, 49(8): 191-204. https://doi.org/10.11896/jsjkx.220200174 |
[3] | 方韬, 杨旸, 陈佳馨. D2D辅助移动边缘计算下的卸载策略优化 Optimization of Offloading Decisions in D2D-assisted MEC Networks 计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114 |
[4] | 胥昊, 曹桂均, 闫璐, 李科, 王振宏. 面向铁路集装箱的高可靠低时延无线资源分配算法 Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container 计算机科学, 2022, 49(6): 39-43. https://doi.org/10.11896/jsjkx.211200143 |
[5] | 畅雅雯, 杨波, 高玥琳, 黄靖云. 基于SEIR的微信公众号信息传播建模与分析 Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR 计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169 |
[6] | 李家文, 郭炳晖, 杨小博, 郑志明. 基于信息传播的致病基因识别研究 Disease Genes Recognition Based on Information Propagation 计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129 |
[7] | 李少辉, 张国敏, 宋丽华, 王秀磊. 基于不完全信息博弈的反指纹识别分析 Incomplete Information Game Theoretic Analysis to Defend Fingerprinting 计算机科学, 2021, 48(8): 291-299. https://doi.org/10.11896/jsjkx.210100148 |
[8] | 桑春艳, 胥文, 贾朝龙, 文俊浩. 社交网络中基于注意力机制的网络舆情事件演化趋势预测 Prediction of Evolution Trend of Online Public Opinion Events Based on Attention Mechanism in Social Networks 计算机科学, 2021, 48(7): 118-123. https://doi.org/10.11896/jsjkx.200600155 |
[9] | 袁得嵛, 陈世聪, 高见, 王小娟. 基于斯塔克尔伯格博弈的在线社交网络扭曲信息干预算法 Intervention Algorithm for Distorted Information in Online Social Networks Based on Stackelberg Game 计算机科学, 2021, 48(3): 313-319. https://doi.org/10.11896/jsjkx.200400079 |
[10] | 魏礼奇, 赵志宏, 白光伟, 沈航. 基于生成对抗网络的位置隐私博弈机制 Location Privacy Game Mechanism Based on Generative Adversarial Networks 计算机科学, 2021, 48(10): 266-271. https://doi.org/10.11896/jsjkx.200900021 |
[11] | 毛莺池, 周彤, 刘鹏飞. 基于延迟接受的多用户任务卸载策略 Multi-user Task Offloading Based on Delayed Acceptance 计算机科学, 2021, 48(1): 49-57. https://doi.org/10.11896/jsjkx.200600129 |
[12] | 陈梦蓉,林英,兰微,单今朝. 基于“奖励制度”的DPoS共识机制改进 Improvement of DPoS Consensus Mechanism Based on Positive Incentive 计算机科学, 2020, 47(2): 269-275. https://doi.org/10.11896/jsjkx.190400013 |
[13] | 翟永, 刘津, 刘磊, 陈杰. 基于博弈论的空间数据中心私有云资源分配管理分析 Analysis of Private Cloud Resource Allocation Management Based on Game Theory in Spatial Data Center 计算机科学, 2020, 47(11A): 373-379. https://doi.org/10.11896/jsjkx.200500106 |
[14] | 王帅辉, 胡谷雨, 潘雨, 张志越, 张海峰, 潘志松. 基于博弈论的符号网络社团发现算法 Community Detection in Signed Networks with Game Theory 计算机科学, 2020, 47(11A): 449-453. https://doi.org/10.11896/jsjkx.200200049 |
[15] | 蔡威, 白光伟, 沈航, 成昭炜, 张慧丽. 移动群智感知中基于强化学习的双赢博弈 Reinforcement Learning Based Win-Win Game for Mobile Crowdsensing 计算机科学, 2020, 47(10): 41-47. https://doi.org/10.11896/jsjkx.200700070 |
|