计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 72-80.doi: 10.11896/jsjkx.200800088

所属专题: 智能化边缘计算

• 智能化边缘计算* 上一篇    下一篇

一种基于遗传算法的多边缘协同计算卸载方案

高基旭, 王珺   

  1. 南京邮电大学通信与信息工程学院 南京 210000
  • 收稿日期:2020-08-16 修回日期:2020-10-18 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 王珺(wang_jun@njupt.edu.cn)
  • 作者简介:gjxaiou@gmail.com

Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm

GAO Ji-xu, WANG Jun   

  1. School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
  • Received:2020-08-16 Revised:2020-10-18 Online:2021-01-15 Published:2021-01-15
  • About author:GAO Ji-xu,born in 1996,postgraduate.His main research interests include mobile edge computing and IoT.
    WANG Jun,born in 1975,Ph.D,asso-ciate professor.Her main research inte-rests include network architecture of IoT and wireless sensor networks.

摘要: 边缘计算(Edge Computing,EC)作为云计算的补充,在处理 lOT 设备产生的计算任务时可以保证计算的延时符合系统的要求。针对在传统卸载场景中,由于计算任务到达存在空窗期导致异地边缘云存在空闲状态,造成异地边缘云利用不充分的问题,文中提出了一种基于遗传算法的多边缘与云端协同计算卸载模型(Genetic Algorithm-based Multi-edge Collaborative Computing Offloading Model,GAMCCOM)。该计算卸载方案联合本地边缘和异地边缘进行任务卸载,并采用遗传算法进行求解,从而得到同时考虑时延和能耗的最小的系统代价。通过仿真实验结果可知,在综合考虑卸载系统的时延消耗和能量消耗的情况下,该方案相比基本的三层卸载方案系统整体代价降低了23%,在只考虑时延消耗和只考虑能量消耗的情况下依然分别能够降低系统代价 17% 和 15%。因此针对边缘计算的不同卸载目标,GAMCCOM 卸载方案对系统代价均有比较优秀的降低效果。

关键词: 边缘计算, 计算卸载, 物联网, 协同卸载, 遗传算法

Abstract: As a supplement to cloud computing,edge computing can ensure that the calculation delay meets system requirements when processing computing tasks generated by lOT equipment.Aiming at the problem of insufficient utilization of the remote edge cloud due to the empty window period of the computing task in the traditional offloading scenario,a genetic algorithm-based multi-edge and cloud collaborative computing offloading model (Genetic Algorithm-based Multi-edge Collaborative Computing Offloading Model,GAMCCOM) is proposed.This computing offloading solution combines local edge and remote edge to perform task offloading and uses a genetic algorithm to get the minimum system cost under consideration of both delay and energy consumption at the same time.The results of simulation experiments show that when considering the time delay consumption and energy consumption of the unloading system,the overall cost of this scheme is reduced by 23% compared with the basic three-layer unloading scheme.In the case of considering time delay consumption and energy consumption respectively,the system cost can still be reduced by 17% and 15% respectively.Therefore,the GAMCCOM offloading method can effectively reduce the system cost for different offloading targets of edge computing.

Key words: Collaborative unloading, Computing unloading, Edge computing, Genetic algorithm, Internet of things

中图分类号: 

  • TP393
[1] XIE R C,LIAN X F,JIA Q M,et al.Overview of mobile edge computing offloading technology [J].Journal on Communications,2018,39(11):138-155.
[2] YUW,HE L F.A Survey on the Edge Computing for the Internet of Things [J].IEEE Access,2017,6(8):6900-6919.
[3] MARTINA M,ALEKSANDAR A,LVANA P Z,et al.EdgeComputing Architecture for Mobile Crowdsensing [J].IEEE Access,2018,6(5):10662-10674.
[4] MAO Y Y,YOU C S,ZHANG J,et al.A Survey on Mobile Edge Computing:The Communication Perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.
[5] PAN J L,JAMES M.Future Edge Cloud and Edge Computing for Internet of Things Applications[J].IEEE Internet of Things Journal,2018,5(1):439-449.
[6] LIU J,MAO Y Y,ZHANG J,et al.Delay-optimal computation task scheduling for mobile-edge computing systems[J].IEEE International Symposium on Information Theory (ISIT),2016,1(4):1451-1455.
[7] YOU C S,HUANG K B.Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing[J].IEEE Transactions on Wireless Communications,2018,17(6):4104-4117.
[8] CHEN L X,ZHOU S,XU J.Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks[J].IEEE/ACM Transactions on Networking,2018,26(4):1619-1932.
[9] ZHOU J S,TIAN D X,WANG Y P.et al.Reliability-Optimal Cooperative Communication and Computing in Connected Vehicle Systems[J].IEEE Transactions on Mobile Computing,2020,19(5):1216-1232.
[10] CAO X W,WANG F,XU J,et al.Joint computation and communication cooperation for energy-efficient mobile edge computing[J].IEEE Internet of Things Journal,2019,6(3):4188-4200.
[11] DAI Y Y,XU D,MAHARJAN S,et al.Joint Load Balancingand Offloading in Vehicular Edge Computing and Networks[J].IEEE Internet of Things Journal,2019,6(3):4377-4387.
[12] ZOU S.Research and Implementation of Computing Offloading and Image Cache Method in Edge Computing Platform[D].Beijing:Beijing University of Posts and Telecommunications,2019.
[13] WU Z K,JIANG L Y,MU Y R.Research on application unloading algorithm with multi edge nodes [J].Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition,2019,39(4):96-102.
[14] CHEN B,QUAN G R.NP-Hard Problems of Learning from Examples[C]//2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.2008,2:182-186.
[15] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[16] LE G X,DAI Y S,YANG X H,et al.Modeling of trusted colla-borative service strategy in edge computing [J].Computer Research and Development,2020,57(5):1080-1102.
[17] SONG Y Z,STEPHEN S Y,YU R Z,et al.An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications[J].IEEE International Conference on Edge Computing (EDGE),2017,13(5):32-39.
[18] GUO H Z,LIU J J.Collaborative Computation Offloading for Multiaccess Edge Computing Over Fiber-Wireless Networks[J].IEEE Transactions on Vehicular Technology,2018,67(5):4514-4526.
[19] GERUTTI G,PRASAD R,BRUTTI A,et al.Compact Recurrent Neural Networks for Acoustic Event Detection on Low-Energy Low-Complexity Platforms[J].IEEE Journal of Selected Topics in Signal Processing,2020,14(4):654-664.
[20] BADRI H,BAHREINI T,GROSU D,et al.Energy-Aware Application Placement in Mobile Edge Computing:A Stochastic Optimization Approach[J].IEEE Transactions on Parallel and Distributed Systems,2020,31(4):909-922.
[1] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[4] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[5] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[6] 袁昊男, 王瑞锦, 郑博文, 吴邦彦.
基于Fabric的电子病历跨链可信共享系统设计与实现
Design and Implementation of Cross-chain Trusted EMR Sharing System Based on Fabric
计算机科学, 2022, 49(6A): 490-495. https://doi.org/10.11896/jsjkx.210500063
[7] 张翕然, 刘万平, 龙华.
物联网僵尸网络病毒的传播动力学模型与分析
Dynamic Model and Analysis of Spreading of Botnet Viruses over Internet of Things
计算机科学, 2022, 49(6A): 738-743. https://doi.org/10.11896/jsjkx.210300212
[8] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[9] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[10] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[11] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[12] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[13] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[14] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[15] 张振超, 刘亚丽, 殷新春.
适用于物联网环境的无证书广义签密方案
New Certificateless Generalized Signcryption Scheme for Internet of Things Environment
计算机科学, 2022, 49(3): 329-337. https://doi.org/10.11896/jsjkx.201200256
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!