计算机科学 ›› 2021, Vol. 48 ›› Issue (10): 185-190.doi: 10.11896/jsjkx.200800219

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于样本特征核矩阵的稀疏双线性回归

邵政毅1, 陈秀宏1,2   

  1. 1 江南大学人工智能与计算机学院 江苏 无锡214122
    2 江苏省媒体设计与软件技术重点实验室 江苏 无锡214122
  • 收稿日期:2020-08-30 修回日期:2020-11-11 出版日期:2021-10-15 发布日期:2021-10-18
  • 通讯作者: 邵政毅(6181611022@stu.jiangnan.edu.cn)

Sample Feature Kernel Matrix-based Sparse Bilinear Regression

SHAO Zheng-yi1, CHEN Xiu-hong1,2   

  1. 1 School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China
    2 Jiangsu Key Laboratory of Media Design and Software Technology,Wuxi,Jiangsu 214122,China
  • Received:2020-08-30 Revised:2020-11-11 Online:2021-10-15 Published:2021-10-18
  • About author:SHAO Zheng-yi,born in 1996,M.S candidate.His main research interests include pattern recognition,linear regression,etc.

摘要: 在许多实际应用中出现了大量的冗余数据,这些数据可能是高维的,这时进行回归预测将会出现过拟合的现象,并且还会出现预测精度偏低等问题。另外,大多数回归方法都是基于向量的,忽略了矩阵数据原始位置之间的关系。为此,文中提出了一种基于样本特征核矩阵的稀疏双线性回归(Kernel Matrix-based Sparse Bilinear Regression,KMSBR)方法。该方法直接将数据矩阵作为输入,其是通过左右回归系数矩阵而建立的,利用样本的特征核矩阵和L2,1范数,能够同时实现对样本及样本特征的选择,且考虑了数据的原始位置,提高了算法的性能。在若干数据集上的实验结果表明,KMSBR能有效地选择相对重要的样本和特征,从而提高算法的运行效率,且其预测精度优于已有的几种回归模型。

关键词: 特征核矩阵, 稀疏性, 线性回归, 样本与特征提取, 左右回归矩阵

Abstract: There are a large number of redundant data in many real applications,which may be high dimensional.In this case,there will be many problems in regression prediction,such as overfitting and low prediction accuracy.In addition,most regression methods are based on vectors,ignoring the relationship between the original positions of matrix data.To this end,a sample kernel matrix-based sparse bilinear regression (KMSBR) method is proposed.The KMSBR model which use the sample feature kernel matrix and L2,1-norm is established through the left and right regression coefficient matrix.Thus,the KMSBR can implement the selection of samples and its features simultaneously.Experimental results on several data sets show that KMSBR can effectively select samples and its features,thus improve the efficiency of the algorithm,and the prediction accuracy is better than the existing regression models.

Key words: Feature kernel matrix, Left and right regression matrix, Linear regression, Sample and feature extraction, Sparsity

中图分类号: 

  • TP391.4
[1]CHATTERJEE S,HADI A S.Regression analysis by example(5th edition)[M].John Wiley & Sons Inc,2012:31-34.
[2]DAVID J O.Linear regression [M].Springer,2017:1-15.
[3]RHINEHART R R.Nonlinear regression modeling for engi-neering applications:modeling,model validation,and enabling design of experiments [M].John Wiley & Sons,2016:12-30.
[4]BASAK D,SRIMANTA P,PATRANBIS D C.Support vectorregression[J].Neural Information Processing Letters & Reviews,2007,11(10):203-224.
[5]CHU W,KEERTHI S S,CHONG J O.Bayesian support vector regression using a unified loss function[J].IEEE Transactions on Neural Networks,2004,15(1):29-44.
[6]ZHAO Y,SUN J.Robust support vector regression in the primal[J].Neural Networks,2008,21(10):1548-1555.
[7]SUYKENS J A K,GESTEL V T,BRABANTER J D,et al.Least squares support vector machines [M].World Scientific,2002:10-12.
[8]CHEN C F.A robust weighted least squares support vector regression based on least trimmed squares[J].Neurocomputing,2015,168:941-946.
[9]TIAN Y,GAO G,YUE J,et al.Two-phase multi-kernel LP-SVR for feature sparsification and forecasting[J].Neurocompu-ting,2016,214:594-606.
[10]ZHANG Z W,HE J,GAO G X,et al.Bi-sparse optimization-based least squares regression[J].Applied Soft Computing,2019,77:300-315.
[11]ZHANG Z,GAO G,YAO T,et al.An interpretable regression approach based on bi-sparse optimization[J].Applied Intelligence,2020,50(11):4117-4112.
[12]STORK D G,HART P E,PATTERN R O.Classification[M].Hoboken,New York,USA,2001:307-321.
[13]LIU J,JI S W,YE J P.Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization [C]//Conference on Uncertrainty in Artificial Intelligence.2009:339-348.
[14]NIE F,HUANG H,CAI X,et al.Efficient and robust feature selection via joint ℓ2,1-norms minimization[C]//International Conference on Neural Information Processing Systems.Curran Associates Inc.2010:1813-1821.
[15]CAI X,NIE F,HUANG H.Exact Top-k Feature Selection via l2,0-Norm Constraint[C]//International Joint Conference on Artificial Intelligence.AAAI Press,2013:1240-1246.
[16]LIU X,WANG L,ZHANG J,et al.Global and Local Structure Preservation for Feature Selection[J].IEEE Transactions on Neural Networks & Learning Systems,2014,25(6):1083-1095.
[17]HOU C,JIAO Y,NIE F,et al.2D Feature Selection by Sparse Matrix Regression[J].IEEE Transactions on Image Processing,2017,26(9):4255-4268.
[18]GABRIEL K R.Generalised bilinear regression[J].Biometrika,1998,85:689-700.
[19]TIBSHIRANI R.Regression shrinkage and selection via theLasso:a retrospective[J].Journal of the Royal Statistical Society:Series B,1994,73(3):267-288.
[20]Репозиторий UCI.UCI Machine Learning Repository:Data Sets [EB/OL].[2018-09-24].http://archive.ics.uci.edu/ml.
[1] 吕由, 吴文渊.
隐私保护线性回归方案与应用
Privacy-preserving Linear Regression Scheme and Its Application
计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190
[2] 李霞, 马茜, 白梅, 王习特, 李冠宇, 宁博.
RIIM:基于独立模型的在线缺失值填补
RIIM:Real-Time Imputation Based on Individual Models
计算机科学, 2022, 49(8): 56-63. https://doi.org/10.11896/jsjkx.210600180
[3] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[4] 王美玲, 刘晓楠, 尹美娟, 乔猛, 荆丽娜.
基于评论和物品描述的深度学习推荐算法
Deep Learning Recommendation Algorithm Based on Reviews and Item Descriptions
计算机科学, 2022, 49(3): 99-104. https://doi.org/10.11896/jsjkx.210200170
[5] 陈长伟, 周晓峰.
快速局部协同表示分类器及其在人脸识别中的应用
Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition
计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155
[6] 马凤飞, 蔺素珍, 刘峰, 王丽芳, 李大威.
基于语义对比生成对抗网络的高倍欠采MRI重建
Semantic-contrast Generative Adversarial Network Based Highly Undersampled MRI Reconstruction
计算机科学, 2021, 48(4): 169-173. https://doi.org/10.11896/jsjkx.200600047
[7] 徐兵, 弋沛玉, 王金策, 彭舰.
知识图谱嵌入的高阶协同过滤推荐系统
High-order Collaborative Filtering Recommendation System Based on Knowledge Graph Embedding
计算机科学, 2021, 48(11A): 244-250. https://doi.org/10.11896/jsjkx.210100211
[8] 杨章静, 王文博, 黄璞, 张凡龙, 王昕.
基于局部加权表示的线性回归分类器及人脸识别
Local Weighted Representation Based Linear Regression Classifier and Face Recognition
计算机科学, 2021, 48(11A): 351-359. https://doi.org/10.11896/jsjkx.210100173
[9] 卢爱红, 郭艳, 李宁, 王萌, 刘杰.
基于原子范数最小化的二维稀疏阵列波达角估计算法
Direction-of-arrival Estimation with Two-dimensional Sparse Array Based on Atomic NormMinimization
计算机科学, 2020, 47(5): 271-276. https://doi.org/10.11896/jsjkx.191200139
[10] 赵楠, 皮文超, 许长桥.
一种面向多维特征分析过滤的视频推荐算法
Video Recommendation Algorithm for Multidimensional Feature Analysis and Filtering
计算机科学, 2020, 47(4): 103-107. https://doi.org/10.11896/jsjkx.190700177
[11] 周明,贾艳明,周彩兰,徐宁.
基于篇章结构的英文作文自动评分方法
English Automated Essay Scoring Methods Based on Discourse Structure
计算机科学, 2019, 46(3): 234-241. https://doi.org/10.11896/j.issn.1002-137X.2019.03.035
[12] 王永, 王永东, 邓江洲, 张璞.
融合Jensen-Shannon散度的推荐算法
Recommendation Algorithm Based on Jensen-Shannon Divergence
计算机科学, 2019, 46(2): 210-214. https://doi.org/10.11896/j.issn.1002-137X.2019.02.032
[13] 冯玉伯,丁承君,高雪,朱雪宏,刘强.
基于滑动平均与分段线性回归的时间序列相似性
Time Series Similarity Based on Moving Average and Piecewise Linear Regression
计算机科学, 2018, 45(6A): 110-113.
[14] 于传波,聂仁灿,周冬明,黄帆,丁婷婷.
改进型低秩线性回归新方法
Novel Method of Improved Low Rank Linear Regression
计算机科学, 2018, 45(6A): 151-156.
[15] 于阳,于洪涛,黄瑞阳.
基于多重信任的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Multiple Trust
计算机科学, 2018, 45(5): 108-115. https://doi.org/10.11896/j.issn.1002-137X.2018.05.019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!