计算机科学 ›› 2021, Vol. 48 ›› Issue (3): 188-195.doi: 10.11896/jsjkx.200600134

• 人工智能 • 上一篇    下一篇

基于LSTM-Attention的RFID移动对象位置预测

刘嘉琛, 秦小麟, 朱润泽   

  1. 南京航空航天大学计算机科学与技术学院 南京211106
  • 收稿日期:2020-06-22 修回日期:2020-09-17 出版日期:2021-03-15 发布日期:2021-03-05
  • 通讯作者: 秦小麟(qinxcs@nuaa.edu.cn)
  • 作者简介:liujiachen@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(61728204)

Prediction of RFID Mobile Object Location Based on LSTM-Attention

LIU Jia-chen, QIN Xiao-lin, ZHU Run-ze   

  1. College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2020-06-22 Revised:2020-09-17 Online:2021-03-15 Published:2021-03-05
  • About author:LIU Jia-chen,born in 1996,postgra-duate.His main research interests include location prediction of moving object and data mining,etc.
    QIN Xiao-lin,born in 1953,professor,Ph.D,is a senior member of China Computer Federation.His main research interests include spatial and spatio-temporal databases,data management and security in distributed environment,etc.
  • Supported by:
    National Natural Science Foundation of China(61728204).

摘要: 随着射频识别(RFID)技术的不断发展,其相比全球定位系统(GPS)具有高精度、数据信息量大的优势,将其应用于智能交通以预测移动对象位置受到广泛关注。然而,由于其定位基站分布离散,并且不同基站对位置预测的影响权重不同,以及长期的历史信息会来带维数灾难等,移动对象的位置预测面临着严峻的挑战。针对这些挑战,在分析现有预测算法的不足的基础上,提出了一种长短期记忆网络(LSTM)和注意力(Attention)机制相结合的机器学习模型(LSTM-Attention)。该算法将one-hot编码后的输入向量通过神经网络进行降维处理后,利用注意力机制来发掘不同的定位基站对位置预测的权重影响,最后进行位置预测。在南京交管局提供的RFID数据集上进行的对比实验表明,与现有算法相比,所提算法在预测准确性上有明显的提升。

关键词: RFID, 长短期记忆网络, 降维, 位置预测, 注意力机制

Abstract: With the continuous development of radio frequency identification (RFID) technology,due to its advantages of high accuracy and large amount of data information compared to global positioning system (GPS),the application of RFID to intelligent transportation to predict the location of moving objects attracts widespread attention.However,due to the discrete distribution of its positioning base stations,the different influences weight of different base stations on position prediction,and the long-term historical information will bring dimensional disasters and other issues,and the position prediction of mobile objects is facing severe challenges.In response to these challenges,based on the analysis of the shortcomings of existing prediction algorithms,a machine learning model combining long short-term memory (LSTM) and attention mechanism is proposed.This algorithm reduces the dimension of the input vector encoded by one-hot through the neural network,and uses the attention mechanism to explore the weighting effect of different positioning base stations on position prediction,and finally performs position prediction.Compa-rative experiment on the RFID data set provided by Nanjing Traffic Management Bureau shows that compared with the existing algorithms,the LSTM-Attention algorithm has a significant improvement in prediction accuracy.

Key words: Attention mechanism, Dimension reduction, Location prediction, Long short-term memory, Radio frequency identification

中图分类号: 

  • TP311
[1]BAO J,ZHENG Y,MOKBEL M F.Location-based and prefe-renceaware recommendation using sparse geo-social networking data[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems.New York:ACM,2012:199-208.
[2]PARK H,LEE Y J,CHAE J,et al.Online Approach for Spatio-Temporal Trajectory Data Reduction for Portable Devices[J].Computer Science and Technology,2013,28(4):597-604.
[3]HSIEH H P ,LIN S D ,ZHENG Y.Inferring Air Quality for Station Location Recommendation Based on Urban Big Data[C]//the 21th ACM SIGKDD International Conference.ACM,2015.
[4]YANG H,ZHANG Y H,GUO P.Vehicle trajectory recognition based on RFID data and GPS data [C]//Proceedings of 2017 China Urban Transportation Planning Annual Conference.2017.
[5]GIANNOTTI F,NANNI M,PINELLI F,et al.Trajectory pattern mining [C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2007:330-339.
[6]MIKOŁA J,MORZY A.Prediction of Moving Object LocationBased on Frequent Trajectories[J].Lecture Notes in Computer Science,2006,4263:583-592.
[7]KRUMM J.A Markov model for driver turn prediction[C]//Proceedings of the Society of Automotive Engineers World Congress.2016:1-7.
[8]KILLIJIAN M O.Next place prediction using mobility Markov chains[C]//Proceedings of the Workshop on Measurement.Privacy,and Mobility,Helsinki,New York:ACM,2012:3.
[9]LIU Q,WU S,WANG L,et al.Predicting the next location:a recurrent model with spatial and temporal contexts[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2016:194-200.
[10]BENGIO Y,SIMARD P Y,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166.
[11]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[12]SU L M,LI L.Research on trajectory prediction method based on machine learning[C]//IOP Conference Series Materials Sci-ence and Engineering.2019.
[13]LI Q,ZHENG Y,XIE X,et al.Mining user similarity based on location history[C]//ACM Sigspatial International Symposium on Advances in Geographic Information Systems.ACM,2008.
[14]BIRANT D,KUT A.ST-DBSCAN:An algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering,2007,60(1):208-221.
[15]PALMA,ANDREY T,BOGORN Y,et al.A clustering-basedapproach for discovering interesting places in trajectories[C]//Acm Symposium on Applied Computing.DBLP,2008.
[16]KOREN Y,BELL R M,VOLINSKY C.Matrix factorizationtechniques for recommender systems[J].IEEE Computer,2009,42(8):30-37.
[17]XIONG L,CHEN X,HUANG T K,et al.Temporal collaborative filtering with Bayesian probabilistic tensor factorization[C]//Proceedings of the SIAM International Conference on Data Mining.Philadelphia:SIAM,2010:211-222.
[18]YING J J C,LEE W C.Semantic trajectory mining for location prediction[C]//Proceedings of the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems.New York:ACM,2011:34-43.
[19]MONREALE A,PINELLI F,TRASARTI R,et al.WhereNext:a location predictor on trajectory pattern mining[C]//Procee-dings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2009:637-646.
[20]MORZY M.Mining frequent trajectories of moving objects for location prediction[C]//Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition.Berlin,Heidelberg:Springer,2007:667-680.
[21]RENDLE S,FREUDENTHALER C,SCHMIDT-THIEME L.Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the Internationl Conference on World Wide Web.New York :ACM,2010:811-820.
[22]MATHEW W,RAPOSO R,MARTINS B.Predicting future locations with hidden Markov models[C]//Proceedings of the 2012 ACM conference on ubiquitous computing.ACM,2012:911-918.
[23]GAO Y,JIANG G H,QIN X L,et al.Position prediction algorithm of moving objects based on LSTM[J].Journal of Compu-ter Science and Exploration,2019,13(1):23-34.
[24]PALANGI H,DENG L,SHEN Y L,et al.Deep sentence embedding using long short-term memory networks:analysis and application to information retrieval[J].IEEE/ACM Transactions on Audio,Speech and Language Processing,2016,24(4):694-707.
[25]LUONG M T ,PHAM H ,MANNING C D.Effective Approaches to Attention-based Neural Machine Translation[J].arXiv:1508.04025v5,2015.
[26]PAULUS R ,XIONG C ,SOCHER R .A Deep Reinforced Mo-del for Abstractive Summarization[J].arXiv:1705.04304v3,2017.
[27]CHENG J P,LI D,LAPATA M.Long Short-Term Memory-Networks for Machine Reading[J].arXiv:1601.06733v7,2016.
[28]CHEN T Q,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:785-794.
[29]FAN W,KUN F,YANG W,et al.A Spatial-Temporal-Semantic Neural Network Algorithm for Location Prediction on Moving Objects[J].Algorithms,2017,10(2):37.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[5] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[6] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[7] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[10] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[11] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[12] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[13] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[14] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[15] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!