计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 235-239.doi: 10.11896/jsjkx.201000056

• 大数据&数据科学 • 上一篇    下一篇

基于新闻的国际天然气价格趋势预测方法

裴莹1, 李天祥2,3, 王鏖清4, 付加胜5, 韩霄松4   

  1. 1 长春财经学院信息工程学院 长春130122
    2 中国科学院大学 北京100049
    3 中国科学院新疆理化技术研究所 乌鲁木齐830011
    4 吉林大学计算机科学与技术学院符号计算与知识工程教育部重点实验室 长春130012
    5 中国石油集团工程技术研究院有限公司 北京102206
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 韩霄松(hanxiaosong@jlu.edu.cn)
  • 作者简介:pei_ying_ok@126.com
  • 基金资助:
    国家自然科学基金(61972174);吉林省科技发展计划(20190302107GX);吉林省产业技术专项研究与开发(2019C053-7);广东省应用基础研究重点项目(2018KZDXM076);广东省重点学科建设计划(2016GDYSZDXK036)

Prediction Method of International Natural Gas Price Trends Based on News

PEI Ying1, LI Tian-xiang2,3, WANG Ao-qing4, FU Jia-sheng5, HAN Xiao-song4   

  1. 1 College of Information Engineering,Changchun University of Finance and Economics,Changchun 130122,China
    2 University of Chinese Academy of Sciences,Beijing 100049,China
    3 Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Urumqi 830011,China
    4 Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry,College of Computer Science and Technology,Jilin University,Changchun 130012,China
    5 CNPC Engineering Technology R&D Company Limited,Beijing 102206,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:PEI Ying,born in 1990,Ph.D student,assistant professor.Her main research interests include financial big data analysis and machine learning.
    HAN Xiao-song,born in 1984,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include machine lear-ning and optimization algorithm.
  • Supported by:
    National Natural Science Foundation of China(61972174),Science Technology Development Project of Jilin Province(20190302107GX),Special Research and Development of Industrial Technology of Jilin Province(2019C053-7),Guangdong Key Project for Applied Fundamental Research(2018KZDXM076) and Guangdong Premier Key-Discipline Enhancement Scheme(2016GDYSZDXK036).

摘要: 天然气作为新型清洁能源,不仅有着重要的能源意义,作为期货交易的大宗商品之一,也有着重要的经济意义,是国家经济和国际贸易的重要组成。但是由于天然气价格受经济因素、政治因素、自然因素甚至人为因素等多种因素的影响,准确预测其价格十分困难。因此,文中设计了一种基于新闻的天然气价格趋势预测方法,该方法首先利用爬虫获取大量天然气相关新闻,并针对新闻进行嵌入表示和情感分析,运用格兰杰因果检验方法证明了天然气价格与相关新闻的情感倾向具有因果关系,并将新闻情感作为新闻向量的权值,将其相乘作为模型输入,然后构建了一个CNN-LSTM融合模型,CNN用于提取新闻特征,LSTM用于捕捉新闻和天然气价格时间序列信息,从而得到了62%的准确率,优于绝大多数机器学习算法。

关键词: 深度学习, 天然气价格, 新闻, 因果检验, 自然语言处理

Abstract: As a new type of clean and important energy,natural gas is one of the bulk commodities of futures trading.As an important component of the national economy and international transactions,it has important economic significance.However,due to the influence of economic,political,natural and even human factors on the price of natural gas,it is very difficult to predict the price accurately.Therefore,a news-based prediction model of natural gas price trends is proposed in this paper.In this model,text embedding and sentiment analysis are conducted on natural gas-related news.The Granger causality test is employed to prove the causality between the price of natural gas and the emotional tendency of relevant news.The news sentiment is multiplied as the weight of the news vector,and the weighted vectors are the input of CNN and LSTM fused model.CNN is used to extract news features,LSTM is used to capture time series information of news and natural gas price trends.Finally,the network achieves an accuracy as 62%.The accuracy is still better than most traditional machine learning algorithms.

Key words: Causality test, Deep learning, Gas price, Nature language process, News

中图分类号: 

  • TP391.1
[1] JAMMAZI R,ALOUI C.Crude oil price forecasting:experimental evidence from wavelet decomposition and neural network modeling[J].Energy Economics,2012,34(3):828-841.
[2] GODARZI A A,AMIRI R M,TALAEI A,et al.Predicting oil price movements:a dynamic artificial neural network approach[J].Energa-Policgy,2014,68:371-382.
[3] XIE W,YU L A,XU S Y,et al.A New Method for Crude Oil Price Forecasting Based on Support Vector Machines[C]//International Conference on Computational Science.Springer,Berlin,Heidelberg,2006:444-451.
[4] ZHANG J L,ZHANG Y J,ZHANG L.A novel hybrid method for crude oil price forecasting[J].Energy Economics,2015,49:649-659.
[5] WESTERLUND J,NARAYAN P K.Does the choice of estimator matter when forecasting returns? [J].Journal of Banking & Finance,2012,36(9):2632-2640.
[6] WESTERLUND J,NARAYAN P.Testing for predictability in conditionally heteroskedastic stock returns[J].Journal of Financial Econometrics,2015,13(2):342-375.
[7] HAN L Y,LV Q N,YIN L B.Can investor attention predict oil prices? [J].Energy Economics,2017,66:547-558.
[8] DE SOUZAE S,LEGEY L F L,DE SOUZA E.Forecasting oil price trends using wavelets and hidden Markov models[J].Energy Economics,2010,32(6):1507-1519.
[9] BALAJIA J,DS H R,NAIR B B.Applicability of Deep Learning Models for Stock Price Forecasting:An Empirical Study on BANKEX Data[J].Procedia Computer Science,2018(143):947-953.
[10] CHEN Q,LIAN W L.Sentiment Classification of Stock News from Internet based on Text Mining[J].China Market,2015(24):234-235.
[11] HUANG R P,ZUO W M,BI L Y.Predicting the Stock Market Based on Microblog Mood[J].Journal of Industrial Engineering/Engineering Management,2015(01 vo 29):47-52,215.
[12] CHEN W L,YEO C,LAU C T,et al.Leveraging social media news to predict stock index movement using RNN-boost[J].Data & Knowledge Engineering,2018,118(NOV.):14-24.
[13] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[9] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[10] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[11] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[12] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[13] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[14] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[15] 楚玉春, 龚航, 王学芳, 刘培顺.
基于YOLOv4的目标检测知识蒸馏算法研究
Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4
计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!