计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 235-239.doi: 10.11896/jsjkx.201000056
裴莹1, 李天祥2,3, 王鏖清4, 付加胜5, 韩霄松4
PEI Ying1, LI Tian-xiang2,3, WANG Ao-qing4, FU Jia-sheng5, HAN Xiao-song4
摘要: 天然气作为新型清洁能源,不仅有着重要的能源意义,作为期货交易的大宗商品之一,也有着重要的经济意义,是国家经济和国际贸易的重要组成。但是由于天然气价格受经济因素、政治因素、自然因素甚至人为因素等多种因素的影响,准确预测其价格十分困难。因此,文中设计了一种基于新闻的天然气价格趋势预测方法,该方法首先利用爬虫获取大量天然气相关新闻,并针对新闻进行嵌入表示和情感分析,运用格兰杰因果检验方法证明了天然气价格与相关新闻的情感倾向具有因果关系,并将新闻情感作为新闻向量的权值,将其相乘作为模型输入,然后构建了一个CNN-LSTM融合模型,CNN用于提取新闻特征,LSTM用于捕捉新闻和天然气价格时间序列信息,从而得到了62%的准确率,优于绝大多数机器学习算法。
中图分类号:
[1] JAMMAZI R,ALOUI C.Crude oil price forecasting:experimental evidence from wavelet decomposition and neural network modeling[J].Energy Economics,2012,34(3):828-841. [2] GODARZI A A,AMIRI R M,TALAEI A,et al.Predicting oil price movements:a dynamic artificial neural network approach[J].Energa-Policgy,2014,68:371-382. [3] XIE W,YU L A,XU S Y,et al.A New Method for Crude Oil Price Forecasting Based on Support Vector Machines[C]//International Conference on Computational Science.Springer,Berlin,Heidelberg,2006:444-451. [4] ZHANG J L,ZHANG Y J,ZHANG L.A novel hybrid method for crude oil price forecasting[J].Energy Economics,2015,49:649-659. [5] WESTERLUND J,NARAYAN P K.Does the choice of estimator matter when forecasting returns? [J].Journal of Banking & Finance,2012,36(9):2632-2640. [6] WESTERLUND J,NARAYAN P.Testing for predictability in conditionally heteroskedastic stock returns[J].Journal of Financial Econometrics,2015,13(2):342-375. [7] HAN L Y,LV Q N,YIN L B.Can investor attention predict oil prices? [J].Energy Economics,2017,66:547-558. [8] DE SOUZAE S,LEGEY L F L,DE SOUZA E.Forecasting oil price trends using wavelets and hidden Markov models[J].Energy Economics,2010,32(6):1507-1519. [9] BALAJIA J,DS H R,NAIR B B.Applicability of Deep Learning Models for Stock Price Forecasting:An Empirical Study on BANKEX Data[J].Procedia Computer Science,2018(143):947-953. [10] CHEN Q,LIAN W L.Sentiment Classification of Stock News from Internet based on Text Mining[J].China Market,2015(24):234-235. [11] HUANG R P,ZUO W M,BI L Y.Predicting the Stock Market Based on Microblog Mood[J].Journal of Industrial Engineering/Engineering Management,2015(01 vo 29):47-52,215. [12] CHEN W L,YEO C,LAU C T,et al.Leveraging social media news to predict stock index movement using RNN-boost[J].Data & Knowledge Engineering,2018,118(NOV.):14-24. [13] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780. |
[1] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[6] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[9] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[10] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[11] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[12] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[13] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[14] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[15] | 楚玉春, 龚航, 王学芳, 刘培顺. 基于YOLOv4的目标检测知识蒸馏算法研究 Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204 |
|