计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 295-298.doi: 10.11896/jsjkx.200500019
杨进才, 曹元, 胡泉, 沈显君
YANG Jin-cai, CAO Yuan, HU Quan, SHEN Xian-jun
摘要: 汉语复句的语义关系丰富而复杂,复句关系自动识别是对复句语义关系的判别,是分析复句所表达意义的重要环节。因果类复句是使用最多的汉语复句,文中以二句式有标因果类复句为研究对象,通过深度学习的方法自动挖掘复句隐含的特征,同时融合了关系词这一语言学研究的显著知识。将word2vec词向量与one-hot编码的关系词特征结合作为模型的输入,利用卷积神经网络作为前馈层的transformer模型来对因果复句关系进行识别。采用文中的方法对因果类复句关系类别进行识别,实验结果的F1值达到92.13%,优于现有的对比模型,表明了该方法的有效性。
中图分类号:
[1] JOTY S,GUZMÁN F,MÀRQUEZ L I,et al.Using Discourse Structure for Machine Translation Evaluation[C]//ACL Procee-dings of the 45th Annual Meeting of the Association for Computational Linguistics.2014:687-698. [2] HUTTUNEN S,VIHAVAINEN A,VON ETTER P,et al.Re-levance Prediction in Information Extraction using Discourse and Lexical Features[C]//Proceedings of the 18th Nordic Confe-rence of Computational Linguistics(NODALIDA 2011).2011:114-121. [3] VERBERNE S,BOVES L,OOSTDIJK N,et al.Evaluating discourse-based answer extraction for why -question answering[C] //ACM.2007. [4] RONG L H,ZHOU G D.An Overview of the Study on Chinese Cause-effect Complex Sentence [J].Journal of Changchun Normal University,2011,30(9):47-51. [5] YANG J C,CHEN Z Z,SHENG X J,et al.Automatic recognition of relation category of non-saturated compound sentences with two clauses [J].Application Research of Computers,2017,34(10):2950-2953. [6] YANG J C,CHEN Z Z,SHENG X J,et al.Word Semantic Relevancy Computation and Categories Identification[J].Application Research of Computers,2017,44(5):280-284. [7] HUANG H,CHANG T,CHEN H,et al.Interpretation of Chinese Discourse Connectives for Explicit Discourse Relation Re-cognition[C]//the 25th International Conference on Computational Linguistics.2014,15(1):632-643. [8] XI X F,ZHOU G D.A Survey on Deep Learning for NaturalLanguage Processing[J].Acta Automatica Sinica,2016,42(10):1445-1465. [9] RÖNNQVIST S,SCHENK N,CHIARCOS C.A RecurrentNeural Model with Attention for the Recognition of Chinese Implicit Discourse Relations[EB/OL].[2017-04-26].https://arxiv.org/abs/1704.08092. [10] ZHOU Y,XUE N.The Chinese Discourse TreeBank:a Chinese corpus annotated with discourse relations[J].Language Resources and Evaluation,2015,49(2):397-431. [11] QIN L,ZHANG Z,ZHAO H.Shallow Discourse Parsing Using Convolutional Neural Network[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:70-77. [12] XING F Y.A Research on Chinese Compound Sentences[M].Beijing:Commercial Press,2003. [13] VASWANI A,SHAZEER N.Attention Is All You Need[C] //31st Conference on Neural Information Processing Systems.2017. [14] IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[EB/OL].[2015-03-02].https://arxiv.org/abs/1502.03167. [15] MIKOLOV T,SUTSKEVER I,CHEN K,et al.DistributedRepresentations of Words and Phrases and their Compositionality[J].Advances in Neural Information Processing Systems,2013,26:3111-3119. [16] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:A Simple Way to Prevent Neural Networks from Overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958. [17] CARUANA R,LAWRENCE S,GILES L.Overfitting in Neural Nets:Backpropagation,Conjugate Gradient,and Early Stopping[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems(NIPS'00).2001:381-387. [18] CARO L D,GRELLA M.Sentiment analysis via dependencyparsing[J].Computer Standards & Interfaces,2013,35(5):442-453. [19] NIEPERT M,AHMED M,KUTZKOV K.Learning Convolu-tional Neural Networks for Graphs [EB/OL].[2016-05-17].https://arxiv.org/abs/1605.05273. |
[1] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[6] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[9] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[10] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[11] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[12] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[13] | 姜胜腾, 张亦弛, 罗鹏, 刘月玲, 曹阔, 赵海涛, 魏急波. 语义通信系统的性能度量指标分析 Analysis of Performance Metrics of Semantic Communication Systems 计算机科学, 2022, 49(7): 236-241. https://doi.org/10.11896/jsjkx.211200071 |
[14] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[15] | 楚玉春, 龚航, 王学芳, 刘培顺. 基于YOLOv4的目标检测知识蒸馏算法研究 Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204 |
|