计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 65-72.doi: 10.11896/jsjkx.210900003

所属专题: 自然语言处理 虚拟专题

• 多语言计算前沿技术* 上一篇    下一篇

多语言问答研究综述

刘创, 熊德意   

  1. 天津大学智能与计算学部 天津300350
  • 收稿日期:2021-07-14 修回日期:2021-09-15 出版日期:2022-01-15 发布日期:2022-01-18
  • 通讯作者: 熊德意(dyxiong@tju.edu.cn)
  • 作者简介:liuc_09@tju.edu.cn
  • 基金资助:
    国家重点研发计划(2019QY1802)

Survey of Multilingual Question Answering

LIU Chuang, XIONG De-yi   

  1. College of Intelligence and Computing,Tianjin University,Tianjin 300350,China
  • Received:2021-07-14 Revised:2021-09-15 Online:2022-01-15 Published:2022-01-18
  • About author:LIU Chuang,born in 1990,Ph.D.His main research interests include question answering and commonsense reasoning.
    XIONG De-yi,born in 1979,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include machine translation,dialogue,and natural language generation.
  • Supported by:
    National Key Research and Development Program(2019QY1802).

摘要: 多语言问答是自然语言处理领域的研究热点之一,其目的是给定不同语种的问题和文本,模型能够返回正确的答案。随着机器翻译技术的快速发展及多语言预训练技术在自然语言处理领域中的广泛应用,多语言问答也取得了较快的发展。文中首先系统地梳理了当前多语言问答方法的相关工作,并将多语言问答方法分为基于特征的方法、基于翻译的方法、基于预训练的方法和基于双重编码的方法,分别介绍了每类方法的使用和特点;然后系统地探讨了当前多语言问答任务的相关工作,将多语言问答任务分为基于文本的多语言问答任务和基于多模态的多语言问答任务,并分别给出每个多语言问答任务的基本定义;接着总结了这些任务中的数据集统计、评价指标,以及涉及的问答方法;最后展望了多语言问答的未来发展方向。

关键词: 多语言问答, 多语言预训练技术, 机器翻译, 基于多模态的多语言问答, 基于文本的多语言问答

Abstract: Multilingual question answering is one of the research hotspots in the field of natural language processing,which aims to enable the model to return a correct answer based on understanding of the given questions and texts in different languages.With the rapid development of machine translation technology and the wide application of multilingual pre-training technology in the field of natural language processing,multilingual question answering has also achieved a relatively rapid development.This paper first systematically reviews the current work of multilingual question answering methods,and divides them into feature-based methods,translation-based methods,pre-training-based methods and dual encoding-based methods,and introduces the use and characteristics of each method respectively.Meanwhile,it also discusses the current work related to multilingual question answe-ring tasks,and divides them into text-based and multi-modal-based tasks and gives the basic definition of each one.Moreover,this paper summarizes the dataset statistics,evaluation metrics and multilingual question answering methods involved in these tasks.Finally,it proposes the future research prospect of multilingual question answering.

Key words: Machine translation, Multilingual pre-training techniques, Multilingual question answering, Multi-modal-based multilingual question answering, Text-based multilingual question answering

中图分类号: 

  • TP391
[1]HERMANN K M,KOCISKY T,GREFENSTETTER E,et al.Teaching machines to read and comprehend[J].Advances in Neural Information Processing Systems,2015,28:1693-1701.
[2]HILL F,BORDES A,CHOPRA S,et al.The goldilocks principle:Reading children's books with explicit memory representations[J].arXiv:1511.02301,2015.
[3]XIE Q,LAI G,DAI Z,et al.Large-scale Cloze Test Dataset Crea-ted by Teachers[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2344-2356.
[4]CUI Y,LIU T,CHEN Z,et al.Consensus Attention-based Neural Networks for Chinese Reading Comprehension[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:1777-1786.
[5]KEMBHAVI A,SEO M,SCHWENK D,et al.Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4999-5007.
[6]WELBL J,LIU N F,GARDNER M.Crowdsourcing MultipleChoice Science Questions[C]//Proceedings of the 3rd Workshop on Noisy User-generated Text.2017:94-106.
[7]OSTERMANN S,MODI A,ROTH M,et al.MCScript:A Novel Dataset for Assessing Machine Comprehension Using Script Knowledge[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).2018.
[8]LAI G,XIE Q,LIU H,et al.RACE:Large-scale Reading Comprehension Dataset From Examinations[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:785-794.
[9]CLARK P,COWHEY I,ETZIONI O,et al.Think you havesolved question answering? try arc,the ai2 reasoning challenge[J].arXiv:1803.05457,2018.
[10]YANG Y,YIH W,MEEK C.Wikiqa:A challenge dataset foropen-domain question answering[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Proces-sing.2015:2013-2018.
[11]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100 000+Questions for Machine Comprehension of Text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:2383-2392.
[12]TRISCHLER A,WANG T,YUAN X,et al.NewsQA:A Machine Comprehension Dataset[C]//Proceedings of the 2nd Workshop on Representation Learning for NLP.2017:191-200.
[13]DUNN M,SAGUN L,HIGGINS M,et al.Searchqa:A new q&a dataset augmented with context from a search engine[J].arXiv:1704.05179,2017.
[14]JOSHI M,CHOI E,WELD D S,et al.TriviaQA:A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1601-1611.
[15]RAJPURKAR P,JIA R,LIANG P.Know What You Don't Know:Unanswerable Questions for SQuAD[C]//Proceedings of the 56th Annual Meeting of the Association for Computatio-nal Linguistics.2018:784-789.
[16]HE W,LIU K,LIU J,et al.DuReader:a Chinese Machine Rea-ding Comprehension Dataset from Real-world Applications[C]//Proceedings of the Workshop on Machine Reading for Question Answering.2018:37-46.
[17]NGUYEN T,ROSENBERG M,SONG X,et al.MS MARCO:A Human Generated MAchine Reading COmprehension Dataset[J].arXiv:1611.09268,2016.
[18]KOCISKY T,SCHWARZ J,BLUNSOM P,et al.The narra-tiveqa reading comprehension challenge[J].Transactions of the Association for Computational Linguistics,2018,6:317-328.
[19]IYYER M,YIH W,CHANG M W.Search-based neural structured learning for sequential question answering[C]//Procee-dings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1821-1831.
[20]SAHA A,PAHUJA V,KHAPRA M,et al.Complex Sequential Question Answering:Towards Learning to Converse Over Linked Question Answer Pairs with a Knowledge Graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018.
[21]TALMOR A,BERANT J.The Web as a Knowledge-Base forAnswering Complex Questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:641-651.
[22]REDDY S,CHEN D,MANNING C D.Coqa:A conversational question answering challenge[J].Transactions of the Association for Computational Linguistics,2019,7:249-266.
[23]CHOI E,HE H,IYYER M,et al.QuAC:Question Answering in Context[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2174-2184.
[24]YANG Z,QI P,ZHANG S,et al.HotpotQA:A Dataset for Diverse,Explainable Multi-hop Question Answering[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2369-2380.
[25]D'HOFFSCHMIDT M,BELBLIDIA W,HEINRICH Q,et al.FQuAD:French Question Answering Dataset[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:Findings.2020:1193-1208.
[26]EFIMOV P,CHERTOK A,BOYTSOV L,et al.SberQuAD-Russian reading comprehension dataset:Description and analysis[C]//International Conference of the Cross-Language Eva-luation Forum for European Languages.Cham:Springer,2020:3-15.
[27]LIM S,KIM M,LEE J.KorQuAD1.0:Korean QA dataset for machine reading comprehension[J].arXiv:1909.07005,2019.
[28]JING Y,XIONG D,YAN Z.BiPaR:A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).2019:2452-2462.
[29]LIU J,LIN Y,LIU Z,et al.XQA:A cross-lingual open-domain question answering dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2358-2368.
[30]LIU P,DENG Y,ZHU C,et al.XCMRC:Evaluating cross-lingual machine reading comprehension[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer,2019:552-564.
[31]ARTETXE M,RUDER S,YOGATAMA D.On the Cross-lingual Transferability of Monolingual Representations[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4623-4637.
[32]LEWIS P,OGUZ B,RINOTT R,et al.MLQA:EvaluatingCross-lingual Extractive Question Answering[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7315-7330.
[33]HARDALOV M,MIHAYLOV T,ZLATKOVA D,et al.EX-AMS:A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).2020:5427-5444.
[34]ROY U,CONSTANT N,AL-RFOU R,et al.LAReQA:Language-agnostic Answer Retrieval from a Multilingual Pool[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).2020:5919-5930.
[35]CLARK J H,CHOI E,COLLINS M,et al.TyDi QA:A benchmark for information-seeking question answering in typologically diverse languages[J].Transactions of the Association for Computational Linguistics,2020,8:454-470.
[36]ASAI A,KASAI J,CLARK J H,et al.XOR QA:Cross-lingual Open-Retrieval Question Answering[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:547-564.
[37]GAO H,MAO J,ZHOU J,et al.Are you talking to a machine? Dataset and methods for multilingual image question answering[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2.2015:2296-2304.
[38]RAMNATH K,SARI L,HASEGAWA-JOHNSON M,et al.Worldly Wise (WoW)-Cross-Lingual Knowledge Fusion for Fact-based Visual Spoken-Question Answering[C]//Procee-dings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:1908-1919.
[39]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.2019:4171-4186.
[40]CONNEAU A,LAMPLE G.Cross-lingual language model pretraining[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:7059-7069.
[41]CONNEAU A,KHANDELWAL K,GOYAL N,et al.Unsuper-vised Cross-lingual Representation Learning at Scale[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:8440-8451.
[42]KAKWANI D,KUNCHUKUTTAN A,GOLLA S,et al.inlp-suite:Monolingual corpora,evaluation benchmarks and pre-trained multilingual language models for indian languages[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:Findings.2020:4948-4961.
[43]KHANUJA S,BANSAL D,MEHTANI S,et al.Muril:Multi-lingual representations for indian languages[J].arXiv:2103.10730,2021.
[44]LUO F,WANG W,LIU J,et al.Veco:Variable encoder-decoder pre-training for cross-lingual understanding and generation[J].arXiv:2010.16046,2020.
[45]CHI Z,DONG L,WEI F,et al.InfoXLM:An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Trai-ning[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:3576-3588.
[46]PHANG J,CALIXTO I,HTUT P M,et al.English Interme-diate-Task Training Improves Zero-Shot Cross-Lingual Transfer Too[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing.2020:557-575.
[47]OUYANG X,WANG S,PANG C,et al.Ernie-m:Enhancedmultilingual representation by aligning cross-lingual semantics with monolingual corpora[J].arXiv:2012.15674,2020.
[48]HU J,JOHNSON M,FIRAT O,et al.Explicit Alignment Objectives for Multilingual Bidirectional Encoders[C]//Procee-dings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:3633-3643.
[49]CHUNG H W,FEVRY T,TSAI H,et al.Rethinking Embedding Coupling in Pre-trained Language Models[C]//International Conference on Learning Representations.2020.
[50]ROBERTSON S,ZARAGOZA H,TAYLOR M.Simple BM25 extension to multiple weighted fields[C]//Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management.2004:42-49.
[51]BRILL E,LIN J,BANKO M,et al.Data-intensive Question Answering[J].NIST Special Publication,2002(500-250):393-400.
[52]ATTARDI G,CISTERNINO A,FORMICA F,et al.PIQASso:PIsa Question Answering System[C]//Text Retrieval Confe-rence 10.NIST,2001:566-607.
[53]ALFONSECA E,DE BONI M,JARA-VALENCIA J L,et al.A prototype question answering system using syntactic and semantic information for answer retrieval[J].NIST Special Publication,2002(500-250):680-685.
[54]KATZ B,BORCHARDT G,FELSHIN S.Syntactic and semantic decomposition strategies for question answering from multiple resources[C]//Proceedings of the AAAI 2005 Workshop on Inference for Textual Question Answering.Menlo Park,CA:AAAI Press,2005:35-41.
[55]CUI H,SUN R,LI K,et al.Question answering passage retrie-val using dependency relations[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2005:400-407.
[56]HOVY E,GERBER L,HERMJAKOB U,et al.Toward semantics-based answer pinpointing[C]//Proceedings of the First International Conference on Human Language Technology Research.2001:1-7.
[57]MORTON T S.Using coreference for question answering[C]//Proceedings of the Workshop on Coreference and its Applications.1999:85-89.
[58]KOLOMIYETS O,MOENS M F.A survey on question answe-ring technology from an information retrieval perspective[J].Information Sciences,2011,181(24):5412-5434.
[59]KO J,SI L,NYBERG E,et al.Probabilistic models for answer-ranking in multilingual question-answering[J].ACM Transactions on Information Systems (TOIS),2010,28(3):1-37.
[60]TURE F,BOSCHEE E.Learning to Translate for Multilingual Question Answering[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:573-584.
[61]NI M,HUANG H,SU L,et al.M3p:Learning universal repre-sentations via multitask multilingual multimodal pre-training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3977-3986.
[62]PIRES T,SCHLINGER E,GARRETTE D.How Multilingual is Multilingual BERT?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:4996-5001.
[63]CUI Y,CHE W,LIU T,et al.Cross-Lingual Machine Reading Comprehension[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:1586-1595.
[1] 董振恒, 任维平, 游新冬, 吕学强.
融入新能源领域术语知识的机器翻译方法
Machine Translation Method Integrating New Energy Terminology Knowledge
计算机科学, 2022, 49(6): 305-312. https://doi.org/10.11896/jsjkx.210500117
[2] 刘俊鹏, 苏劲松, 黄德根.
融合特定语言适配模块的多语言神经机器翻译
Incorporating Language-specific Adapter into Multilingual Neural Machine Translation
计算机科学, 2022, 49(1): 17-23. https://doi.org/10.11896/jsjkx.210900005
[3] 于东, 谢婉莹, 谷舒豪, 冯洋.
基于语种关联度课程学习的多语言神经机器翻译
Similarity-based Curriculum Learning for Multilingual Neural Machine Translation
计算机科学, 2022, 49(1): 24-30. https://doi.org/10.11896/jsjkx.210800254
[4] 侯宏旭, 孙硕, 乌尼尔.
蒙汉神经机器翻译研究综述
Survey of Mongolian-Chinese Neural Machine Translation
计算机科学, 2022, 49(1): 31-40. https://doi.org/10.11896/jsjkx.210900006
[5] 刘妍, 熊德意.
面向小语种机器翻译的平行语料库构建方法
Construction Method of Parallel Corpus for Minority Language Machine Translation
计算机科学, 2022, 49(1): 41-46. https://doi.org/10.11896/jsjkx.210900012
[6] 宁秋怡, 史小静, 段湘煜, 张民.
基于风格感知的无监督领域适应算法
Unsupervised Domain Adaptation Based on Style Aware
计算机科学, 2022, 49(1): 271-278. https://doi.org/10.11896/jsjkx.201200094
[7] 刘小蝶.
基于边界感知的复杂名词短语的识别和转换研究
Recognition and Transformation for Complex Noun Phrases Based on Boundary Perception
计算机科学, 2021, 48(6A): 299-305. https://doi.org/10.11896/jsjkx.200500157
[8] 郭丹, 唐申庚, 洪日昌, 汪萌.
手语识别、翻译与生成综述
Review of Sign Language Recognition, Translation and Generation
计算机科学, 2021, 48(3): 60-70. https://doi.org/10.11896/jsjkx.210100227
[9] 周小诗, 张梓葳, 文娟.
基于神经网络机器翻译的自然语言信息隐藏
Natural Language Steganography Based on Neural Machine Translation
计算机科学, 2021, 48(11A): 557-564. https://doi.org/10.11896/jsjkx.210100015
[10] 乔博文,李军辉.
融合语义角色的神经机器翻译
Neural Machine Translation Combining Source Semantic Roles
计算机科学, 2020, 47(2): 163-168. https://doi.org/10.11896/jsjkx.190100048
[11] 纪明轩, 宋玉蓉.
一种基于对数位置表示和自注意力的机器翻译新模型
New Machine Translation Model Based on Logarithmic Position Representation and Self-attention
计算机科学, 2020, 47(11A): 86-91. https://doi.org/10.11896/jsjkx.200200003
[12] 王坤, 段湘煜.
倾向近邻关联的神经机器翻译
Neural Machine Translation Inclined to Close Neighbor Association
计算机科学, 2019, 46(5): 198-202. https://doi.org/10.11896/j.issn.1002-137X.2019.05.030
[13] 汪琪, 段湘煜.
基于注意力卷积的神经机器翻译
Neural Machine Translation Based on Attention Convolution
计算机科学, 2018, 45(11): 226-230. https://doi.org/10.11896/j.issn.1002-137X.2018.11.035
[14] 杨陟卓.
基于上下文翻译的有监督词义消歧研究
Supervised WSD Method Based on Context Translation
计算机科学, 2017, 44(4): 252-255. https://doi.org/10.11896/j.issn.1002-137X.2017.04.053
[15] 李金廷,侯宏旭,武静,王洪彬,樊文婷.
语料预处理对蒙古文-汉文统计机器翻译的影响
Effect of Preprocessing on Corpus of Mongolian-Chinese Statistical Machine Translation
计算机科学, 2017, 44(10): 259-264. https://doi.org/10.11896/j.issn.1002-137X.2017.10.047
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!