计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 74-80.doi: 10.11896/jsjkx.220700280

• 联邦学习* 上一篇    下一篇

基于联邦学习的暖通空调系统故障检测与诊断

王先圣, 严珂   

  1. 中国计量大学信息工程学院 杭州310000
  • 收稿日期:2022-07-28 修回日期:2022-10-08 发布日期:2022-12-14
  • 通讯作者: 严珂(yanke@cjlu.edu.cn)
  • 作者简介:(p20030854033@cjlu.edu.cn)

Fault Detection and Diagnosis of HVAC System Based on Federated Learning

WANG Xian-sheng, YAN Ke   

  1. School of Information Engineering,China Jiliang University,Hangzhou 310000,China
  • Received:2022-07-28 Revised:2022-10-08 Published:2022-12-14
  • About author:WANG Xian-sheng,born in 1997,postgraduate.His main research interests include machine learning,deep learning,and fault detection and diagnosis.YAN Ke,born in 1983,Ph.D,associate professor.His main research interests include artificial intelligence,machine learning,data mining,deep learning,and energy control.

摘要: 暖通空调系统的自动化和准确故障检测与诊断是智能工业设施维护领域减少时间、能源和财务成本的最重要技术之一。近年来,基于数据驱动的故障检测与诊断方法在暖通空调方面表现出色,但是大多数方法都只能检测单一故障等级的故障,并且不能进行跨系统故障诊断。为了解决这两个问题,提出一种基于联邦学习的故障检测与诊断方法,该方法使用卷积神经网络来提取信息特征,利用特定算法进行聚合,经过多次联邦学习,能够进行跨故障等级和跨系统故障检测与诊断。在多故障等级故障检测与诊断方面,利用冷水机组4个故障等级数据进行联邦学习。实验结果显示,4个故障等级的故障检测和诊断效果的F1-score平均值接近0.97,已经达到实际应用水平。在跨系统故障检测与诊断方面,利用冷水机组和空气处理机组数据进行联邦学习。实验结果表明,利用不同系统数据进行联邦学习,可以提高某些轻微故障的诊断效果,比如,相比传统机器学习方法,RefOver故障的诊断效果F1-score提升了14.4%,Refleak和Exoil两个故障的诊断F1-score提升了2%~4%。

关键词: 暖通空调系统, 故障检测与诊断, 卷积神经网络, 联邦学习

Abstract: Automation and accurate fault detection and diagnosis of HVAC systems is one of the most important technologies for reducing time,energy,and financial costs in building performance management.In recent years,data-driven fault detection and diagnosis methods have been heavily studied for fault detection and diagnosis of HVAC systems.However,most existing works deal with single systems and are unable to perform cross-system fault diagnosis.In this paper,a federal learning-based fault detection and diagnosis method is proposed,which uses convolutional neural networks to extract information features,aggregates features using special-designed algorithms,and perform cross-level and cross-system fault detection and diagnosis via federal lear-ning.For multi-fault level fault detection and diagnosis,federal learning is performed using data from four fault levels of chillers.Experimental results show that the average F1-score of the fault detection and diagnosis effect of the four-fault levels is close to 0.97,which is within the practical range.Federal learning uses chiller and air handling unit data for cross-system fault detection and diagnosis.Experimental results show that federal learning using different system data improves the diagnosis results of particular faults,e.g.,14.4% for RefOver faults and 2%~4% for both Refleak and Exoil faults.

Key words: Heating ventilation and air conditioning systems, Fault detection and diagnosis, Convolutional neural networks, Fede-rated learning

中图分类号: 

  • TP391
[1]OMER A M.Energy,environment and sustainable development[J].Renewable and Sustainable Energy Reviews,2008,12(9):2265-2300.
[2]PAN Y,YANG G H.Event-triggered fault detection filter design for nonlinear networked systems[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(11):1851-1862.
[3]YAN K,MA L,DAI Y,et al.Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis[J].International Journal of Refrigeration,2018,86:401-409.
[4]ADHIKARI R,PIPATTANASOMPORN M,RAHMAN S.Heuristic algorithms for aggregated HVAC control via smart thermostats for regulation service[J].IEEE Transactions on Smart Grid,2019,11(3):2023-2032.
[5]YAN K,JI Z,SHEN W.Online fault detection methods forchillers combining extended kalman filter and recursive one-class SVM[J].Neurocomputing,2017,228:205-212.
[6]HE S,WANG Z,WANG Z,et al.Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary[J].Applied Thermal Engineering,2016,107:37-47.
[7]XU X,XIAO F,WANG S.Enhanced chiller sensor fault detection,diagnosis and estimation using wavelet analysis and principal component analysis methods[J].Applied Thermal Enginee-ring,2008,28(2/3):226-237.
[8]YAN K,JI Z,LU H,et al.Fast and accurate classification of time series data using extended ELM:Application in fault diagnosis of air handling units[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,49(7):1349-1356.
[9]ŽÁKOVÁ M,KŘEMEN P,ŽELEZNY F,et al.Automatingknowledge discovery workflow composition through ontology-based planning[J].IEEE Transactions on Automation Science and Engineering,2010,8(2):253-264.
[10]CHAKRABORTY D,ELZARKA H.Early detection of faults in HVAC systems using an XGBoost model with a dynamic thre-shold[J].Energy and Buildings,2019,185:326-344.
[11]XIONG G,YAN K,ZHOU X.A distributed learning based sentiment analysis methods with Web applications[C]//World Wide Web.2022:1-18.
[12]KIM W,BRAUN J E.Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics[J].International Journal of Refrigeration,2016,63:184-198.
[13]BEHFAR A,YUILL D.Evaluation of gray box thermostatic expansion valve mass flow models[J].International Journal of Refrigeration,2018,96:161-168.
[14]ZHAO Y,WANG S,XIAO F.Pattern recognition-based chillers fault detection method using support vector data description (SVDD)[J].Applied Energy,2013,112:1041-1048.
[15]YUN W S,HONG W H,SEO H.A data-driven fault detection and diagnosis scheme for air handling units in building HVAC systems considering undefined states[J].Journal of Building Engineering,2021,35:102111.
[16]LI B,CHENG F,CAI H,et al.A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network[J].Energy and Buildings,2021,246:111044.
[17]HUANG R,LIU J,CHEN H,et al.An effective fault diagnosis method for centrifugal chillers using associative classification[J].Applied Thermal Engineering,2018,136:633-642.
[18]YAN K,SHEN W,MULUMBA T,et al.ARX model basedfault detection and diagnosis for chillers using support vector machines[J].Energy and Buildings,2014,81:287-295.
[19]YAN R,MA Z,ZHAO Y,et al.A decision tree based data-dri-ven diagnostic strategy for air handling units[J].Energy and Buildings,2016,133:37-45.
[20]MULUMBA T,AFSHARI A,YAN K,et al.Robust model-based fault diagnosis for air handling units[J].Energy and Buildings,2015,86:698-707.
[21]LI D,ZHOU Y,HU G,et al.Fault detection and diagnosis for building cooling system with a tree-structured learning method[J].Energy and Buildings,2016,127:540-551.
[22]YAN K,CHONG A,MO Y.Generative adversarial network for fault detection diagnosis of chillers[J].Building and Environment,2020,172:106698.
[23]CUN Y L,BOSER B,DENKER J,et al.Handwritten digit reco-gnition with a back-propagation network[J].Advances in neural information processing systems,1989,2:96-404.
[24]REN H,QU J F,CHAI Y,et al.Deep learning for fault diagnosis:The state of the art and challenge[J].Control and Decision,2017,32(8):1345-1358.
[25]KHARE S K,BAJAJ V.Time-frequency representation andconvolutional neural network-based emotion recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(7):2901-2909.
[26]GHOLIZADEH N,MUSILEK P.Federated learning with hyperparameter-based clustering for electrical load forecasting[J].Internet of Things,2022,17:100470.
[27]SUN X,YAN K,ZHOU X.Fault Detection and Diagnosis of Chillers with S&D Convolutional Neural Network[C]//Proceedings of IEEE International Conference on Smart Data.IEEE,2020:829-836.
[28]YAN K,ZHONG C,JI Z,et al.Semi-supervised learning for early detection and diagnosis of various air handling unit faults[J].Energy and Buildings,2018,181:75-83.
[29]XIAO F,ZHENG C,WANG S.A fault detection and diagnosis strategy with enhanced sensitivity for centrifugal chillers[J].Applied Thermal Engineering,2011,31(17/18):3963-3970.
[30]WALL J,GUO Y,LI J,et al.A Dynamic Machine Learning-based Technique for Automated Fault Detection in HVAC Systems[J].Ashrae Transactions,2011,117(2):449-456.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[5] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[6] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[7] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[8] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[9] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[10] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[11] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[12] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[13] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!