计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 354-359.doi: 10.11896/jsjkx.210200116

• 信息安全 • 上一篇    下一篇

面向个性化需求的云制造服务可信评价模型

杨玉丽1, 李宇航1, 邓岸华2   

  1. 1 太原理工大学信息与计算机学院 太原030024
    2 西安电子科技大学计算机科学与技术学院 西安710070
  • 收稿日期:2021-02-18 修回日期:2021-06-04 出版日期:2022-03-15 发布日期:2022-03-15
  • 通讯作者: 杨玉丽(yangyuliyyl@126.com)
  • 基金资助:
    山西省面上青年基金资助项目(201901D211076)

Trust Evaluation Model of Cloud Manufacturing Services for Personalized Needs

YANG Yu-li1, LI Yu-hang1, DENG An-hua2   

  1. 1 College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China
    2 School of Computer Science and Technology,Xidian University,Xi’an 710070,China
  • Received:2021-02-18 Revised:2021-06-04 Online:2022-03-15 Published:2022-03-15
  • About author:YANG Yu-li,born in 1979,Ph.D,is a member of China Computer Federation.Her main research interests include cloud manufacturing service,cloud computing and trust management.
  • Supported by:
    Young People Fundation of Shanxi Province,China(201901D211076).

摘要: 针对传统的云制造服务可信评价模型中存在的可扩展性弱、难以满足个性化需求等问题,提出一种可扩展性强、可以较好地满足个性化需求的可信评价模型。首先构建多层次的、多粒度的云制造服务可信评价框架;然后基于此框架,提出了基于云模型的云制造服务可信评价方法,在该方法中,引入云模型理论,用于统一表征不同类型的评价指标,以及描述用户的个性化需求,采用标准离差法计算不同评价指标的权重系数;最后通过应用案例检测所提方法的有效性,并通过时间开销的对比实验验证该方法的可行性。实验结果表明,与传统的方法相比,该模型在合理的时间开销范围内,可以根据用户的个性化需求,对不同的云制造服务提供方进行更为准确的可信评价,进而帮助用户选择满意度更高的云制造服务。

关键词: 服务质量, 个性化需求, 可信评价, 云模型, 云制造服务

Abstract: Aiming at the problems of weak extensibility and difficulty in meeting personalized requirements in traditional trust evaluation models of cloud manufacturing service,a trust evaluation model of cloud manufacturing service for personalized needs is proposed.Firstly,a multi-level and multi-granularity trust evaluation framework of cloud manufacturing service is designed.Then,based on the framework,a trust evaluation method of cloud manufacturing services based on cloud model is proposed.In this method,the cloud model theory is used to characterize different types of evaluation indexes uniformly,and also used to describe the personalized needs.The standard deviations are used to calculate the weight coefficients of different evaluation indexes.Finally,the effectiveness and feasibility of the proposed model are verified through a case analysis and a comparative experiment of time overhead,respectively.Compared with traditional methods,the experimental results show that within a reasonable amount of time,according to the personalized requirements of users,the proposed model could make more accurate trust evaluations for different cloud manufacturing service providers,and then help users choose the cloud manufacturing service with the higher satisfaction.

Key words: Cloud manufacturing service, Cloud model, Personalized need, Quality of service, Trust evaluation

中图分类号: 

  • TP391
[1]YAO J,XING B,ZENG J,et al.Survey on Cloud Manufacturing Service Composition[J].Computer Science,2021,48(7):245-255.
[2]HU Y J,WU L Z,ZHANG L,et al.Review on theory and me-thod of cloud manufacturing service evaluation[J].Computer Integrated Manufacturing Systems,2017,23(3):640-649.
[3]OOI K B,LEE V H,TANG W H,et al.Cloud computing inmanufacturing:the next industrial revolution in Malaysia[J].Expert Systems with Applications,2018,93:376-394.
[4]FENG Y,HUANG B Q.Hierarchical and configurable trustevaluation model of cloud manufacturing services [J].Computer Integrated Manufacturing Systems,2017,23(10):2291-2303.
[5]HE K T,ZHU D Y.Quality evaluation of cloud manufacturing service [J].Computer Integrated Manufacturing Systems,2018,24(1):53-62.
[6]CHEN Y L,HUANG D,ZHANG Y Y,et al.Evaluation and selection for knowledge Resources in cloud manufacturing environment[J].Journal of Northeastern University (Natural Scien-ce),2018,39(8):1169-1174.
[7]ZHANG Z J,ZHANG Y M,XU X S,et al.Manufacturing ser-vice composition self-adaptive approach based on dynamic ma-tching network[J].Journal of Software,2018,29(11):3355-3373.
[8]LIU J,CHEN Y.HAP:A Hybrid QoS Prediction Approach in Cloud Manufacturing Combining Local Collaborative Filtering and Global Case-based Reasoning[J].IEEE Transactions on Services Computing,2019:1-14.
[9]SIMEONE A,DENG B,CAGGIANO A.Resource efficiency enhancement in sheet metal cutting industrial networks through cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology,2020,107(7):1-21.
[10]ALABOOL H,KAMIL A,ARSHAD N,et al.Cloud serviceevaluation method-based multi-criteria decision-making:A systematic literature review[J].Journal of Systems and Software,2018,139:161-188.
[11]MOURAD M H,NASSEHI A,SCHAEFER D,et al.Assess-ment of interoperability in cloud manufacturing[J].Robotics and Computer-Integrated Manufacturing,2020,61:101832.
[12]CARNEGIE M.The Cloud Service Measurement Initiative Consortium,Service Measurement Index (SMI)[OL].http://www.cloudcommons.com/about-smi/.
[13]YANG Y L,LIU R,CHEN Y L,et al.Normal cloud model-based algorithm for multi-attribute trusted cloud service selection[J].IEEE Access,2018,6:37644-37652.
[14]LI D,LIU C,GAN W.A new cognitive model:Cloud model[J].International Journal of Intelligent Systems,2009,24(3):357-375.
[15]ZHAO J H,WANG X H.Two-sided matching model of cloudservice based on QoS in cloud manufacturing environment [J].Computer Integrated Manufacturing Systems,2016,22(1):104-112.
[16]YADAV N,GORAYA M S.Two-way ranking based servicemapping in cloud environment[J].Future Generation ComputerSystems,2018,81:53-66.
[1] 姚娟, 邢镔, 曾骏, 文俊浩.
云制造服务组合研究综述
Survey on Cloud Manufacturing Service Composition
计算机科学, 2021, 48(7): 245-255. https://doi.org/10.11896/jsjkx.200800173
[2] 孙明玮, 司维超, 董琪.
基于多维度数据的网络服务质量的综合评估研究
Research on Comprehensive Evaluation of Network Quality of Service Based on Multidimensional Data
计算机科学, 2021, 48(6A): 246-249. https://doi.org/10.11896/jsjkx.200900131
[3] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[4] 陆懿帆, 曹芮浩, 王俊丽, 闫春钢.
一种基于微服务的检察业务服务封装方法
Method of Encapsulating Procuratorate Affair Services Based on Microservices
计算机科学, 2021, 48(2): 33-40. https://doi.org/10.11896/jsjkx.191100152
[5] 周川.
基于改进樽海鞘算法的共享单车分布密度优化
Optimization of Sharing Bicycle Density Distribution Based on Improved Salp Swarm Algorithm
计算机科学, 2021, 48(11A): 106-110. https://doi.org/10.11896/jsjkx.210700096
[6] 蒋建峰, 尤澜涛.
基于MPLS-TE的数据中心网络QoS优化
QoS Optimization of Data Center Network Based on MPLS-TE
计算机科学, 2021, 48(11A): 485-489. https://doi.org/10.11896/jsjkx.210900190
[7] 杨章林, 谢钧, 张耕强.
基于定向天线的飞行自组网定向路由协议综述
Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas
计算机科学, 2021, 48(11): 334-344. https://doi.org/10.11896/jsjkx.210400182
[8] 魏礼奇, 赵志宏, 白光伟, 沈航.
基于生成对抗网络的位置隐私博弈机制
Location Privacy Game Mechanism Based on Generative Adversarial Networks
计算机科学, 2021, 48(10): 266-271. https://doi.org/10.11896/jsjkx.200900021
[9] 徐飞, 王少昌, 杨卫霞.
基于博弈论的云资源调度算法
Cloud Resource Scheduling Algorithm Based on Game Theory
计算机科学, 2019, 46(6A): 295-299.
[10] 孙明玮, 齐玉东.
基于云模型和改进灰色关联分析模型的网络服务质量综合评估
Comprehensive Evaluation of Network Service Quality Based on Cloud Model
and Improved Grey Relational Analysis Model
计算机科学, 2019, 46(5): 315-319. https://doi.org/10.11896/j.issn.1002-137X.2019.05.049
[11] 马小晋,饶国宾,许华虎.
云计算中任务调度研究的调查
Research on Task Scheduling in Cloud Computing
计算机科学, 2019, 46(3): 1-8. https://doi.org/10.11896/j.issn.1002-137X.2019.03.001
[12] 张杰鑫, 庞建民, 张铮, 邰铭, 刘浩.
拟态构造Web服务器的服务质量量化方法
QoS Quantification Method for Web Server with Mimic Construction
计算机科学, 2019, 46(11): 109-118. https://doi.org/10.11896/jsjkx.181001922
[13] 曹艳蓉, 章韵, 李涛, 李华康.
基于可信评价的医疗社区咨询检索优化算法
Online Health Community Searching Method Based on Credible Evaluation
计算机科学, 2018, 45(10): 150-154. https://doi.org/10.11896/j.issn.1002-137X.2018.10.028
[14] 孙卫,黄金科.
基于QoS的分布式认知无线电网络多信道MAC协议
Multi-channel MAC with QoS Provisioning for Distributed Cognitive Radio Networks
计算机科学, 2017, 44(Z6): 288-293. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.066
[15] 杜波,俞岩,戴刚.
基于云模型的指挥信息多重协同过滤算法研究
Study on Multi-collaborative Filtering Algorithm of Command Information Based on Cloud Models
计算机科学, 2017, 44(Z11): 470-475. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.100
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!