计算机科学 ›› 2021, Vol. 48 ›› Issue (6): 261-267.doi: 10.11896/jsjkx.200400131

• 计算机网络 • 上一篇    下一篇

带宽和时延受限的流媒体服务器集群负载均衡机制

郑增乾1, 王锟1, 赵涛2, 蒋维3, 孟利民1   

  1. 1 浙江工业大学信息工程学院 杭州310000
    2 浙江省通信产业服务有限公司 杭州310000
    3 浙江树人大学信息科技学院 杭州310000
  • 收稿日期:2020-04-28 修回日期:2020-06-23 出版日期:2021-06-15 发布日期:2021-06-03
  • 通讯作者: 孟利民(mlm@zjut.edu.cn)
  • 基金资助:
    国家自然科学基金(61871349);浙江省自然科学基金(LQ19F010013,LY18F010024);2019年金华市科技计划项目(公益类)(2019-4-176)

Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster

ZHENG Zeng-qian1, WANG Kun1, ZHAO Tao2, JIANG Wei3, MENG Li-min1   

  1. 1 College of Information Engineering,Zhejiang University of Technology,Hangzhou 310000,China
    2 Zhejiang Communication Industry Service,Co.,Ltd.,Hangzhou 310000,China
    3 College of Information Science and Technology,Zhejiang Shuren University,Hangzhou 310000,China
  • Received:2020-04-28 Revised:2020-06-23 Online:2021-06-15 Published:2021-06-03
  • About author:ZHENG Zeng-qian,born in 1995,postgraduate.His main research interests include streaming media server and load balancing.(2111803022@zjut.edu.cn)
    MENG Li-min,born in 1963,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include wireless communication and network,streaming media transmission and IoT communications.
  • Supported by:
    National Natural Science Foundation of China(61871349),Natural Science Foundation of Zhejiang Province,China(LQ19F010013,LY18F010024) and Science and Technology Program of Jinhua in 2019(2019-4-176).

摘要: 流媒体服务器集群的整体负载能力很大程度上受其服务时延和带宽负载均衡程度的影响。因此如何提高服务实时性和均衡带宽负载是提升流媒体服务器集群服务能力的关键。为此,提出了一种带宽和时延受限的流媒体服务器集群负载均衡机制。该机制通过将服务器带宽和任务带宽的离散化、区间化,构建服务器与任务状态集,再利用遗传算法离线计算并存储各个状态下的最佳分配方案,使得在有效地将不同带宽需求的任务分配到各个服务器上优化集群负载的同时,加快在线任务分配方案的计算速度,提高时效性。仿真结果显示,该机制能够在拥有与轮询算法、最小连接数算法相似的计算时延的基础上,有效均衡带宽负载,降低失败任务数,从而提升整体服务质量和能力。

关键词: 服务器集群, 服务质量, 负载均衡, 离线计算, 流媒体服务, 遗传算法

Abstract: Overall load capacity of streaming media server cluster is largely affected by its service delay and bandwidth load balancing.Therefore,how to improve the real-time capability of service and balance the bandwidth load are the keys to improve the streaming media server cluster service capabilities.This paper proposes a load balancing mechanism for bandwidth and time-delay constrained streaming media server cluster.Through discretizing bandwidth of server and task,the mechanism builds the server and task state sets.And it uses genetic algorithms to calculate and store the optimal allocation scheme in each state offline to speed up the online task assignment scheme calculation while effectively allocating tasks with different bandwidth requirements to each server to optimize the cluster load.Results of simulation show that the mechanism can effectively balance the bandwidth load and reduce the number of failed tasks on the basis of having a calculation delay similar to the round-robin algorithm and least connections algorithm,thereby improving the overall service quality and ability.

Key words: Calculate off-line, Genetic algorithm, Load balancing, Quality of service, Server cluster, Streaming service

中图分类号: 

  • TP301
[1]SHU W Q.0.3% Bandwidth Acceleration Effectively Promotes GDP Growth[J].Communication World,2011(46):19.
[2]JIN Q.Audio and Video Data Traffic Will Account for 79% of New Traffic in 2020[N].People’s Posts and Telecommunications News,2016-05-10(6).
[3]GUL K S Q,WANG P,LUO S L,et al.A Techenical Research on High-concurrency Web Application[J].Netinfo Security,2017(12):29-35.
[4]LIU Y,WANG L S,GUO G C.Design and Implementation on Self-adaptive Dynamic Load Balance Services in EJB Cluster System[J].Application Research of Computers,2008(7):2064-2067.
[5]CAI Y T.Research and Application of Streaming Media Load Balancing Based on Nginx[D].ChengDu:University of Electronic Science and Technology of China,2019.
[6]WANG Z.Research on Load Balancing Strategy of Streaming Media Server Cluster[D].Xi’an:Xi'an University of Posts & Telecommunications,2017.
[7]LI J,NIE Y F,ZHOU S J.A Dynamic Load Balancing Algorithm Based on Consistent Hash[C]//Proceedings of 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC).Xi’an:IEEE Press,2018:2387-2391.
[8]WEN Z,LI G,YANG G.Research and Realization of Nginx-based Dynamic Feedback Load Balancing Algorithm[C]//Proceedings of the 2018 IEEE 3rd Advanced Information Techno-logy,Electronic and Automation Control Conference (IAEAC).Chongqing:IEEE Press,2018:2541-2546.
[9]ZHONG H,FANG Y,CUI J.LBBSRT:An Efficient SDN Load Balancing Scheme Based on Server Response Time[J].Future Generation Computer Systems,2017,68(Mar.):183-190.
[10]GUO C C,YAN P L.A Dynamic Load-balancing Algorithm for Heterogeneous Web Server Cluster[J].Chinese Journal of Computers,2005,28(2):179-184.
[11]GAO Z B,PAN Y C,HUA Z,et al.Improved Load Balancing Algorithm Based on Weighted Least-connections[J].Science Technology and Engineering,2016,16(6):81-85.
[12]XU F,WANG S C,YANG W X.Could Resource Scheduling Algorithm Based on Game Theory[J].Computer Science,2019,46(6A):295-299.
[13]WANG W B,YE Q W,ZHOU Y,et al.Dynamic Load Balancing Algorithm Based on Queuing Theory Comprehensive Index Evalution[J].Telecommunications Science,2018,34(7):86-91.
[14]WANG Z,LIU Z Y.An Improved Dynamic Load-balancing Algorithm for StreamingMedia Cluster[J].Computer & Digital Engineering,2018,46(2):241-246.
[15]LI G,QU W L,TIAN F,et al.An Improved Cycle Adaptive Dynamic Load Balancing Algorithm[J].Journal of Chinese Computer Systems,2015,36(7):1476-1480.
[16]MA J Y,DING G G,WANG R Y.A New Load Balancing Me-thod Based on Simulated Annealing Algorithm in Streaming Media System[C]//Proceedings of the 2012 8th International Confe-rence on Wireless Communications,Networking and Mobile Computing.Shanghai:IEEE Press,2012:1-4.
[17]PAN K,CHEN J Q.Load Balancing in Cloud Computing Environment Based on an Improved Particle Swarm Optimization[C]//Proceedings of the 2015 6th IEEE International Confe-rence on Software Engineering and Service Science (ICSESS).Beijing:IEEE Press,2015:595-598.
[18]ZHENG B L,LI Y H.Study on SDN Network Load Balancing Based on IACO[J].Computer Science,2019,46(6A):291-294.
[19]LI Y M,YAN H.Research on Cloud Computing System Re-source Load Balancing[J].Computer Measurement & Control,2016,24(10):219-221,225.
[20]SUN J W,ZHOU L,DING Q L.Research of Dynamic Load Ba-lancing Based on Simulated Annealing Algorithm[J].Computer Science,2013,40(5):89-92.
[21]LIU B,XU J M,DAI S H,et al.Load Balancing AlgorithmBased on Linux Vitrual Server[J].Computer Engineering,2011,37(23):279-281,287.
[1] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[2] 田真真, 蒋维, 郑炳旭, 孟利民.
基于服务器集群的负载均衡优化调度算法
Load Balancing Optimization Scheduling Algorithm Based on Server Cluster
计算机科学, 2022, 49(6A): 639-644. https://doi.org/10.11896/jsjkx.210800071
[3] 高捷, 刘沙, 黄则强, 郑天宇, 刘鑫, 漆锋滨.
基于国产众核处理器的深度神经网络算子加速库优化
Deep Neural Network Operator Acceleration Library Optimization Based on Domestic Many-core Processor
计算机科学, 2022, 49(5): 355-362. https://doi.org/10.11896/jsjkx.210500226
[4] 杨玉丽, 李宇航, 邓岸华.
面向个性化需求的云制造服务可信评价模型
Trust Evaluation Model of Cloud Manufacturing Services for Personalized Needs
计算机科学, 2022, 49(3): 354-359. https://doi.org/10.11896/jsjkx.210200116
[5] 谭双杰, 林宝军, 刘迎春, 赵帅.
基于机器学习的分布式星载RTs系统负载调度算法
Load Scheduling Algorithm for Distributed On-board RTs System Based on Machine Learning
计算机科学, 2022, 49(2): 336-341. https://doi.org/10.11896/jsjkx.201200126
[6] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[7] 夏中, 向敏, 黄春梅.
基于CHBL的P2P视频监控网络分层管理机制
Hierarchical Management Mechanism of P2P Video Surveillance Network Based on CHBL
计算机科学, 2021, 48(9): 278-285. https://doi.org/10.11896/jsjkx.201200056
[8] 姚娟, 邢镔, 曾骏, 文俊浩.
云制造服务组合研究综述
Survey on Cloud Manufacturing Service Composition
计算机科学, 2021, 48(7): 245-255. https://doi.org/10.11896/jsjkx.200800173
[9] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[10] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[11] 王政, 姜春茂.
一种基于三支决策的云任务调度优化算法
Cloud Task Scheduling Algorithm Based on Three-way Decisions
计算机科学, 2021, 48(6A): 420-426. https://doi.org/10.11896/jsjkx.201000023
[12] 孙明玮, 司维超, 董琪.
基于多维度数据的网络服务质量的综合评估研究
Research on Comprehensive Evaluation of Network Quality of Service Based on Multidimensional Data
计算机科学, 2021, 48(6A): 246-249. https://doi.org/10.11896/jsjkx.200900131
[13] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[14] 陆懿帆, 曹芮浩, 王俊丽, 闫春钢.
一种基于微服务的检察业务服务封装方法
Method of Encapsulating Procuratorate Affair Services Based on Microservices
计算机科学, 2021, 48(2): 33-40. https://doi.org/10.11896/jsjkx.191100152
[15] 左剑凯, 吴杰宏, 陈嘉彤, 刘泽源, 李忠智.
异构无人机编队防御及评估策略研究
Study on Heterogeneous UAV Formation Defense and Evaluation Strategy
计算机科学, 2021, 48(2): 55-63. https://doi.org/10.11896/jsjkx.191100053
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!