计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 321-328.doi: 10.11896/jsjkx.210300240

• 计算机网络 • 上一篇    下一篇

基于生成对抗网络的5G网络流量预测方法

高志宇, 王天荆, 汪悦, 沈航, 白光伟   

  1. 南京工业大学计算机科学与技术学院 南京 211816
  • 收稿日期:2021-03-23 修回日期:2021-07-30 发布日期:2022-04-01
  • 通讯作者: 高志宇(gaozyi@foxmail.com)
  • 基金资助:
    江苏省自然科学基金(BK20201357); 国家教育部产学合作协同育人项目(201902182003); 江苏省“六大人才高峰”高层次人才项目(RJFW-020); 江苏省大数据安全与智能处理重点实验室项目(南京邮电大学)(BDSIP1910); 计算机软件新技术国家重点实验室项目(南京大学)(KFKT2017B21); 江苏省研究生科研与实践创新计划(SJCX21_0486)

Traffic Prediction Method for 5G Network Based on Generative Adversarial Network

GAO Zhi-yu, WANG Tian-jing, WANG Yue, SHEN Hang, BAI Guang-wei   

  1. College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
  • Received:2021-03-23 Revised:2021-07-30 Published:2022-04-01
  • About author:GAO Zhi-yu,born in 1996,postgra-duate.His main research interests include network flow prediction and load balancing.
  • Supported by:
    This work was supported by the Natural Science Foundation of Jiangsu Province(BK20201357),University-Industry Collaborative Education Program of the Ministry of Education(201902182003),Six Talent Peak High-level Talent Project of Jiangsu Province(RJFW-020),Jiangsu Key Laboratory Project of Big Data Security and Intelligent Processing(Nanjing University of Posts and Telecommunications)(BDSIP1910),State Key Laboratory Project of New Computer Software Technology(Nanjing University)(KFKT2017B21) and Jiangsu Graduate Scientific Research and Practice Innovation Plan(SJCX21_0486).

摘要: 无线接入用户的需求呈爆炸式增长,5G网络流量呈指数级增长且呈现出多样性、异构性的趋势,使得网络流量预测面临诸多挑战。针对5G网络部署宏基站、微基站与微微基站的多层架构,文中提出基于生成对抗网络(GAN)的流量预测方法。首先,生成网络分别捕捉流量时空特征与基站类型特征,将拼接特征输入复合残差模块以生成预测流量,并将生成流量输入判别网络;然后,判别网络判断生成流量是真实流量还是预测流量;最后,经过生成网络与判别网络的博弈对抗使生成网络生成高精度的预测流量。实验结果表明,GAN的二维均方根预测误差分别比2DCNN,3DCNN和ConvLSTM降低了58.64%,38.74%和34.88%,具有最优的流量预测性能。

关键词: 5G网络, 流量预测, 生成对抗网络, 时空特征挖掘

Abstract: With the explosive growth of wireless access user demand, 5G network traffic is increasing exponentially and showing a trend of diversity and heterogeneity, which made the network traffic prediction face many challenges.Due to the multi-layer architecture of macro base station, micro base station and pico base station in 5G network, a traffic prediction method based on ge-nerative adversarial network (GAN) is proposed.First, the generation network captures the temporal-spatial features of network traffic and the type features of base station, and then the splicing feature is inputted into the composite residual module to gene-rate the predictive traffic, which is inputted into the discriminant network.Second, the discriminant network determines whether the generative traffic is real traffic or predictive traffic.Finally, after the game confrontation between the generation network and the discriminant network, the generation network could generate high-precision predictive traffic.The experimental results show that, compared with 2DCNN, 3DCNN and ConvLSTM, the two-dimensional root mean square predictive error of GAN is reduced by 58.64%, 38.74% and 34.88%, respectively.Therefore, GAN has the best performance of traffic prediction.

Key words: 5G network, Generative adversarial networks, Spatial-temporal feature mining, Traffic prediction

中图分类号: 

  • TP393
[1] LI X Q,WU S C,GAO Y A.The demand and development of internet of things for 5G:A survey[C]//2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW).2018:1-2.
[2] GHOSH A,MAEDER A,BAKER M,et al.5G evolution:a view on 5G cellular technology beyond 3GPP release 15[J].IEEE Access,2019,7(99):127639-127651.
[3] XIE Y Y,SHI J,HUANG S K,et al.Survey on Internet ofThings Based on Named Data Networking Facing 5G[J].Computer Science,2020,47(4):217-225.
[4] ZHU C B,CHENG X Z,YE H N,et al.5G wireless net-works meet big data challenges,trends,and applica-tions[C]//2019 IEEE Smart World,Ubiquitous Intelligence & Computing,Advanced & Trusted Computing,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation.2019:1513-1516.
[5] LIU X L,NIRWAN A.Dual-battery enabled profit driven user association in green heterogeneous cellular net-works[J].IEEE Transactions on Green Communications and Networking,2018,2(4):1002-1011.
[6] XU F L,LIN Y Y,HUANG J X,et al.Big data driven mobile traffic understanding and forecasting:a time series approach[J].IEEE Transactions on Services Computing,2016,9(5):796-805.
[7] KUSDARWATI H,HANDOYO S.System for prediction of non stationary time series based on the wavelet radial bases function neural network model[J].International Journal of Electrical & Computer Engineering,2018,8(4):2327-2337.
[8] LI R P,ZHAO Z F,ZHENG J C,et al.The learning and prediction of application-level traffic data in cellular networks[J].IEEE Transactions on Wireless Communications,2017,16(6):3899-3912.
[9] GAO B H,LIU Z W,LIU H.Network traffic prediction based on SCSO-GRU model[J].Computer and Modernization,2020,296(4):72-77,84.
[10] XU W G.On adaptive MWM model based on network informa-tion flow[J].Journal of Southwest China Normal University(Natural Science Edition),2015,40(9):48-53.
[11] LING Z D,LV H H.Wavelet coefficient aware network traffic prediction[J].Journal of Terahertz Science and Electronic Information Technology,2019,17(1):131-135.
[12] ZHANG C Y,PARTRAS P.Long-Term mobile traffic forecasting using deep spatio-temporal neural networks[C]//Procee-dings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc’18).Asso-ciation for Computing Machinery,2018:231-240.
[13] WANG D,WANG C C,XIAO J H,et al.Bayesian optimization of support vector machine for regression prediction of short-term traffic flow[J].Intelligent Data Analysis,2019,23(2):481-497.
[14] GAO J X,GAO X M,YANG H Y.Short-term traffic flow prediction based on time-space characteristics[C]//2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE).2020:128-132.
[15] LIU Y P,ZHENG H F,FENG X X,et al.Short-term trafficflow prediction with Conv-LSTM[C]//2017 9th International Conference on Wireless Communications and Signal Processing (WCSP).IEEE,2017:1-6.
[16] WANG J,TANG J,XU Z Y,et al.Spatiotemporal modeling and prediction in cellular networks:A big data enabled deep learning approach[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications.IEEE,2017:1-9.
[17] ZHANG Z W,WU D,ZHANG C J.Study of Cellular Traffic Prediction Based on Multi-channel Sparse LSTM[J].Computer Science,2021,48(6):296-300.
[18] HEWAGE P,BEHERA A,TROVATI M,et al.Temporal con-volutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J].Soft Computing,2020,24(21):16453-16482.
[19] ZHAO W T,GAO Y Y,JI T X,et al.Deep temporal convolutional networks for short-term traffic flow forecasting[J].IEEE Access,2019,7(1):114496-114507.
[20] HUANG C H,CHIANG C T,LI Q H.A study of deep lear-ning networks on mobile traffic forecasting[C]//2017 IEEE 28th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications (PIMRC).IEEE,2017:1-6.
[21] ZHANG J,BAI G W,SHA X L,et al.Mobile Traffic Forecasting Model Based on Spatio-temporal Features[J].Computer Science,2019,46(12):108-113.
[22] ALDHYANI T H H,ALRASHEED M,ALQARNI A A,et al.Intelligent hybrid model to enhance time series models for predicting network traffic[J].IEEE Access,2020,8(1):130431-130451.
[23] BARLACCHI G,NADAI M D,LARCHER R,et al.A multi-source dataset of urban life in the city of Milan and the Province of Trentino[J].Scientific Data,2015,2(1):150055-150070.
[1] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[2] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[3] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[4] 尹文兵, 高戈, 曾邦, 王霄, 陈怡.
基于时频域生成对抗网络的语音增强算法
Speech Enhancement Based on Time-Frequency Domain GAN
计算机科学, 2022, 49(6): 187-192. https://doi.org/10.11896/jsjkx.210500114
[5] 徐辉, 康金梦, 张加万.
基于特征感知的数字壁画复原方法
Digital Mural Inpainting Method Based on Feature Perception
计算机科学, 2022, 49(6): 217-223. https://doi.org/10.11896/jsjkx.210500105
[6] 黎思泉, 万永菁, 蒋翠玲.
基于生成对抗网络去影像的多基频估计算法
Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal
计算机科学, 2022, 49(3): 179-184. https://doi.org/10.11896/jsjkx.201200081
[7] 石达, 芦天亮, 杜彦辉, 张建岭, 暴雨轩.
基于改进CycleGAN的人脸性别伪造图像生成模型
Generation Model of Gender-forged Face Image Based on Improved CycleGAN
计算机科学, 2022, 49(2): 31-39. https://doi.org/10.11896/jsjkx.210600012
[8] 唐雨潇, 王斌君.
基于深度生成模型的人脸编辑研究进展
Research Progress of Face Editing Based on Deep Generative Model
计算机科学, 2022, 49(2): 51-61. https://doi.org/10.11896/jsjkx.210400108
[9] 李建, 郭延明, 于天元, 武与伦, 王翔汉, 老松杨.
基于生成对抗网络的多目标类别对抗样本生成算法
Multi-target Category Adversarial Example Generating Algorithm Based on GAN
计算机科学, 2022, 49(2): 83-91. https://doi.org/10.11896/jsjkx.210800130
[10] 谈馨悦, 何小海, 王正勇, 罗晓东, 卿粼波.
基于Transformer交叉注意力的文本生成图像技术
Text-to-Image Generation Technology Based on Transformer Cross Attention
计算机科学, 2022, 49(2): 107-115. https://doi.org/10.11896/jsjkx.210600085
[11] 陈贵强, 何军.
自然场景下遥感图像超分辨率重建算法研究
Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene
计算机科学, 2022, 49(2): 116-122. https://doi.org/10.11896/jsjkx.210700095
[12] 蒋宗礼, 樊珂, 张津丽.
基于生成对抗网络和元路径的异质网络表示学习
Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2022, 49(1): 133-139. https://doi.org/10.11896/jsjkx.201000179
[13] 张玮琪, 汤轶丰, 李林燕, 胡伏原.
基于场景图的段落生成序列图像方法
Image Stream From Paragraph Method Based on Scene Graph
计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207
[14] 徐涛, 田崇阳, 刘才华.
基于深度学习的人群异常行为检测综述
Deep Learning for Abnormal Crowd Behavior Detection:A Review
计算机科学, 2021, 48(9): 125-134. https://doi.org/10.11896/jsjkx.201100015
[15] 林椹尠, 张梦凯, 吴成茂, 郑兴宁.
利用生成对抗网络的人脸图像分步补全法
Face Image Inpainting with Generative Adversarial Network
计算机科学, 2021, 48(9): 174-180. https://doi.org/10.11896/jsjkx.200800014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!