计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 217-223.doi: 10.11896/jsjkx.210500105
徐辉1,2, 康金梦1, 张加万1
XU Hui1,2, KANG Jin-meng1, ZHANG Jia-wan1
摘要: 敦煌壁画存在多种病害造成的不规则破损区域,运用数字修复的方式对其进行恢复,既不会对原始壁画造成损坏,又可以获得较好的修补效果。由于壁画修补问题中缺失的区域较大,不能用局部非语义的修补方法来实现。针对敦煌壁画缺损区域的修复问题,设计了基于生成对抗网络的图像修补方法,使用语义上合理的内容来渲染缺失区域的像素,实现非接触性壁画场景重建,从而提升壁画虚拟修复准确度。该算法在生成对抗神经网络的基础上引入感知损失函数,在生成模型中添加3层扩张卷积层来收集破损区域的图像特征,利用感知损失提升模型对高频纹理细节的修复能力,运用扩展卷积提取范围特征激励生成模型生成较高质量的图像结果。在敦煌壁画数据集上将所提方法与3种优秀方法进行了比较,修复结果显示所提算法在测试数据集上的PSNR评分提高了1.79%,SSIM评分提高了7.7%。所提修复模型提升了破损壁画的修复精度,使修复结果更加准确。
中图分类号:
[1] CHEN Y,AI Y P,GUO H G.Inpainting algorithm for dun-huang mural based on improved curvature-driven diffusion mo-del[J].Journal of Computer-Aided Design & Computer Gra-phics,2020,32(5):787-796. [2] ZHANG Z Y,SHUI W Y,ZHOU M Q,et al.Research on disease extraction and inpainting algorithm of digital grotto murals[J].Application Research of Computers,2021,38(8):1-5. [3] BELHI A,BOURAS A,AL-ALI A K,et al.A machine learning framework for enhancing digital experiences in cultural heritage[J/OL].Journal of Enterprise Mnformation Management.https://doi.org/10.1108/JEIM-02-2020-0059. [4] BERTALMIO M,SAPIRO G,CASELLES V,et a1.Image inpainting[C]//Proceedings of International Conference on Computer Graphics and Interactive Techniques.New Orleans,Louisiana,USA,2000:417-424. [5] BERTALMIO M.Strong-continuation,contrast-invariant inpain-ting with a third order optimal PDE[J].IEEE Transaction on Image Processing,2006,15(7):1934-1938. [6] CHAN T F,SHEN J H.Non-texture inpainting by curvature-driven diffusions(CDD)[J].Journal of Visual Communication and Image Representation,2001,12(4):436-449. [7] CHAN R H,WEN Y W,YIP A M.A fast optimization transfer algorithm for image inpainting in wavelet domains[J].IEEE Transactions onImage Processing,2009,18(7):1467-1476. [8] DRORI I,COHEN-OR D,YESHURUN H.Fragment-basedimage completion[C]//ACM S2GGRAPH.2003:303-312. [9] CRIMINISI A,PEREZ P,TOYAMA K.Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions On Image Processing.2004,13(9):25-29. [10] XU Z,SUN J.Image inpainting by patch propagation usingpatch sparsity[J].IEEE Transactions onImage Processing,2010,19(5):1153-1165. [11] YANG X P,WANG S W.Dunhuang mural inpainting in intricate disrepaired region based on improvement of priority algorithm[J].Journal of Computer-Aided Design & Computer Graphics,2011,23(2):284-289. [12] JIAO L J,WANG W J,LI B J,et al.Wutai mountain mural inpainting based on improved block matching algorithm[J].Journal of Computer-Aided Design & Computer Graphics,2019,31(1):118-125. [13] ZHAO L L,SHEN L,HONG R C.Survey on image inpainting research progress[J].Computer Science,2021,48(3):14-26. [14] KÖHLER R,SCHULER C,SCHÖLKOPF B,et al.Mask-specific inpainting with deep neural networks[C]//German Confe-rence on Pattern Recognition.Cham:Springer,2014:523-534. [15] XIE J,XU L,CHEN E.Image denoising and inpainting with deep neural networks[C]//Advances in Neural Information Processing Systems.2012:341-349. [16] REN J S J,XU L,YAN Q,et al.Shepard convolutional neural networks[C]//Advances in Neural Information Processing Systems.2015:901-909. [17] PATHAK D,KRAHENBUHL P,DONAHUE J,et al.Context encoders:Feature learning by inpainting[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2536-2544. [18] LI Y,LIU S,YANG J,et al.Generative face completion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:3911-3919. [19] IIZUKA S,SIMO-SERRA E,ISHIKAWA H.Globally and locally consistent image completion[J].ACM Transactions on Graphics,2017,36(4):1-14. [20] YAN Z,LIX,LI M,et al.Shift-net:Image inpainting via deep feature rearrangement[C]//Proceedings of the European Conference on Computer Vision.2018:1-17. [21] RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks[EB/OL].http://arxiv.Org/abs/1511.06434. [22] ZOU Z,ZHAO P,ZHAO X F.Automatic segmentation,inpain-ting,and classification of defective patterns on ancient architecture using multiple deep learning algorithms[J/OL].Structural Contural & Health Monitoring.https://doi.org/10.1002/stc.2742. [23] GOODFELLOW I,POUGET-ABADIE J,MIRZA M.Genera-tive Adversarial Networks[DB/OL].http://arxiv.Org/abs/1406.2661. [24] MIRZA M,OSINDERO S.Conditional Generative AdversarialNets[DB/OL].http://arxiv.Org/abs/1411.1784. [25] DENTON E,CHINTALA S,SZLAM A,et a1.Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[DB/OL].http://arxiv.Org/abs/506.05751. [26] LEI L,GUO D E,JIN F.Image Inpainting Algorithm Based on Conditional Generative Adversarial Network with Spectral Normalization[J].Computer Engineering,2021,47(1):230-238. [27] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gan[J].arXiv:1701.07875,2017. [28] CHEN Y,GAO Y.Image denoising via iterative diffusion me-thods combining two edge-indicators with adaptive thresholds[J].Multimedia Tools and Applications,2021,80(10):16027-16044. |
[1] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[2] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[3] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[4] | 尹文兵, 高戈, 曾邦, 王霄, 陈怡. 基于时频域生成对抗网络的语音增强算法 Speech Enhancement Based on Time-Frequency Domain GAN 计算机科学, 2022, 49(6): 187-192. https://doi.org/10.11896/jsjkx.210500114 |
[5] | 高志宇, 王天荆, 汪悦, 沈航, 白光伟. 基于生成对抗网络的5G网络流量预测方法 Traffic Prediction Method for 5G Network Based on Generative Adversarial Network 计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240 |
[6] | 黎思泉, 万永菁, 蒋翠玲. 基于生成对抗网络去影像的多基频估计算法 Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal 计算机科学, 2022, 49(3): 179-184. https://doi.org/10.11896/jsjkx.201200081 |
[7] | 李建, 郭延明, 于天元, 武与伦, 王翔汉, 老松杨. 基于生成对抗网络的多目标类别对抗样本生成算法 Multi-target Category Adversarial Example Generating Algorithm Based on GAN 计算机科学, 2022, 49(2): 83-91. https://doi.org/10.11896/jsjkx.210800130 |
[8] | 谈馨悦, 何小海, 王正勇, 罗晓东, 卿粼波. 基于Transformer交叉注意力的文本生成图像技术 Text-to-Image Generation Technology Based on Transformer Cross Attention 计算机科学, 2022, 49(2): 107-115. https://doi.org/10.11896/jsjkx.210600085 |
[9] | 陈贵强, 何军. 自然场景下遥感图像超分辨率重建算法研究 Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene 计算机科学, 2022, 49(2): 116-122. https://doi.org/10.11896/jsjkx.210700095 |
[10] | 石达, 芦天亮, 杜彦辉, 张建岭, 暴雨轩. 基于改进CycleGAN的人脸性别伪造图像生成模型 Generation Model of Gender-forged Face Image Based on Improved CycleGAN 计算机科学, 2022, 49(2): 31-39. https://doi.org/10.11896/jsjkx.210600012 |
[11] | 唐雨潇, 王斌君. 基于深度生成模型的人脸编辑研究进展 Research Progress of Face Editing Based on Deep Generative Model 计算机科学, 2022, 49(2): 51-61. https://doi.org/10.11896/jsjkx.210400108 |
[12] | 张玮琪, 汤轶丰, 李林燕, 胡伏原. 基于场景图的段落生成序列图像方法 Image Stream From Paragraph Method Based on Scene Graph 计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207 |
[13] | 蒋宗礼, 樊珂, 张津丽. 基于生成对抗网络和元路径的异质网络表示学习 Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning 计算机科学, 2022, 49(1): 133-139. https://doi.org/10.11896/jsjkx.201000179 |
[14] | 林椹尠, 张梦凯, 吴成茂, 郑兴宁. 利用生成对抗网络的人脸图像分步补全法 Face Image Inpainting with Generative Adversarial Network 计算机科学, 2021, 48(9): 174-180. https://doi.org/10.11896/jsjkx.200800014 |
[15] | 刘立波, 苟婷婷. 融合深度典型相关分析和对抗学习的跨模态检索 Cross-modal Retrieval Combining Deep Canonical Correlation Analysis and Adversarial Learning 计算机科学, 2021, 48(9): 200-207. https://doi.org/10.11896/jsjkx.200600119 |
|