计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 303-310.doi: 10.11896/jsjkx.210400077

• 信息安全 • 上一篇    下一篇

群智感知的隐私保护研究综述

李利1, 何欣2,3, 韩志杰3   

  1. 1 河南大学计算机与信息工程学院 河南 开封475004
    2 河南大学智能网络理论与关键技术国际联合实验室 河南 开封475004
    3 河南大学软件学院 河南 开封475004
  • 收稿日期:2021-04-08 修回日期:2021-07-20 出版日期:2022-05-15 发布日期:2022-05-06
  • 通讯作者: 何欣(hxsyjkf@foxmail.com)
  • 作者简介:(kathleenlee@126.com)
  • 基金资助:
    国家自然科学基金(61672209,61701170);河南省重大科技专项(201300210400);河南省重点研发与推广专项(212102210094)

Review of Privacy-preserving Mechanisms in Crowdsensing

LI Li1, HE Xin2,3, HAN Zhi-jie3   

  1. 1 School of Computer and Information Engineering,Henan University,Kaifeng,Henan 475004,China
    2 International Joint Laboratory of Intelligent Network Theory and Key Technology,Henan University,Kaifeng,Henan 475004,China
    3 School of Software,Henan University,Kaifeng,Henan 475004,China
  • Received:2021-04-08 Revised:2021-07-20 Online:2022-05-15 Published:2022-05-06
  • About author:LI Li,born in 1977,Ph.D candidate, is a student member of China Computer Federation.Her main research interests include crowdcomputing,crowdsensing,privacy-preserving and machine lear-ning.
    HE Xin,born in 1974,professor,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include crowdsensing,mobilecomputing,cloudcomputing and big data processing.
  • Supported by:
    National Natural Science Foundation of China(61672209,61701170),Major Science and Technology Special Project of Henan Province(201300210400) and Key R & D and Promotion Special Project of Henan Province(212102210094).

摘要: 近年来,智能终端的快速普及极大地推动了集数据采集、分析、处理于一体的群智感知服务的发展。隐私保护作为保障服务安全运行和鼓励感知用户参与的必要手段,成为需要解决的首要科学问题。文中首先从群智感知的全生命周期出发,在描述其主要组成部分和业务流程之后,再从群智感知场景对隐私保护的特有需求出发,对隐私保护的定义和衡量指标进行讨论,并对现有文献设计的隐私保护机制所侧重的不同阶段进行分类,从隐私保护范围、保护强度、感知用户身份可追溯、感知数据损失和感知终端能耗的角度对文献使用的隐私保护机制进行讨论。在此基础上对文献使用的实验数据集进行梳理,最后结合群智感知应用的发展需求和全球对隐私保护的监管要求提出未来研究面临的挑战。

关键词: 密码学, 匿名化, 群智感知, 群智计算, 隐私保护

Abstract: In recent years,the rapid popularity of intelligent terminals has greatly promoted the development of crowdsensing service paradigm,which integrates data collection,analysis and processing.As a necessary base to ensure the safe operation of services and encourage the participation of sensing users,privacy-preserving has become the primary issue to be solved.This paper presents the state-of-the-art in privacy-preserving mechanisms for crowdsensing service.After describing its main components,this paper discusses the definition and metrics of privacy-preserving from the view of crowdsensing’s whole life cycle.The privacy-preserving mechanisms designed in literatures are analyzed and discussed according to different stages in crowdsensing’s whole-life-cycle,and the experimental datasets used in literatures are given.Finally,Future research challenges are proposed based on the development of crowdsensing and global regulatory requirements for privacy-preserving.

Key words: Anonymization, Crowdcomputing, Crowdsensing, Encryption, Privacy-preserving

中图分类号: 

  • TP393
[1]GOASDUFF L,PETTEY C.Gartner Says Worldwide Smart-phone Sales to Grow 11% in 2021(WSCI)[OL].https://www.gartner.com/en/newsroom/press-releases/2021-02-03-gartner-says-worldwide-smartphone-sales-to-grow-11-percent-in-2021.
[2]RIMOL M.Gartner Forecasts Global Spending on Wearable Devices to Total $81.5 Billion in 2021(WSCI)[OL].https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021.
[3]GANTI R K,FAN Y,LEI H.Mobile crowdsensing:currentstate and future challenges[J].IEEE Communications Magazine,2011,49(11):32-39.
[4]KHAN W Z,XIANG Y,AALSALEM M Y,et al.Mobile Phone Sensing Systems:A Survey[J].IEEE Communications Surveys &Tutorials,2013,15(1):402-427.
[5]LIU L,WEI W,ZHAO D,et al.Urban Resolution:New Metric for Measuring the Quality of Urban Sensing[J].IEEE Transactions on Mobile Computing,2015,14(12):2560-2575.
[6]WU Y,WANG Y,HU W,et al.SmartPhoto:A Resource-Aware Crowdsourcing Approach for Image Sensing with Smartphones[J].IEEE Transactions on Mobile Computing,2016,15(5):1249-1263.
[7]SAREMI F,FATEMIEH O,AHMADI H,et al.Experienceswith GreenGPS—Fuel-Efficient Navigation Using Participatory Sensing[J].IEEE Transactions on Mobile Computing,2016,15(3):672-689.
[8]PRYSS R,REICHERT M,HERRMANN J,et al.Mobile Crowd Sensing in Clinical and Psychological Trials-A Case Study[C]//2015 IEEE 28th International Symposium on Computer-Based Medical Systems.IEEE Press,2015:23-24.
[9]REDDY S,PARKER A,HYMAN J,et al.Image browsing,processing,and clustering for participatory sensing:lessons from a DietSense prototype[C]//Workshop on Embedded Networked Sensors.ACM,2007.
[10]LIU L,LIU W,ZHENG Y,et al.Third-Eye:A mobilephone-enabled crowdsensing system for air quality monitoring[J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2018,2(1):1-26.
[11]KIM S,ROBSON C,ZIMMERMAN T,et al.Creek Watch:Pairing usefulness and usability for successful citizen science[C]//Proceedings of the ACM Conference on Human Factors in Computing Systems.Canada:ACM,2011:2125-2134.
[12]BONINO D,DELGADO M T,PASTRONE C,et al.WasteApp:Smarter Waste Recycling for Smart Citizens[C]//2016 International Multidisciplinary Conference on Computer and Energy Science (SpliTech).IEEE,2016:1-6.
[13]MATARAZZO T J,SANTI P,PAKZAD S N,et al.Crowdsensing Framework for Monitoring Bridge Vibrations Using Moving Smartphones[J].Proceedings of the IEEE,2018,106(4):577-593.
[14]LI Q,CAO G.Efficient and Privacy-Aware Data Aggregation in Mobile Sensing[J].IEEE Transactions on Dependable and Secure Computing,2014,11(2):115-129.
[15]WANG E,YANG Y J,WU J,et al.An Efficient Prediction-Based User Recruitment for Mobile Crowdsensing[J].IEEE Transactions on Mobile Computing,2018,17(1):16-28.
[16]YIN B,LU J,WEI X T.Correlation-Based Task ProcessingPlans in Crowdsensing Platforms[J].IEEE Transactions on Network Science and Engineering,2021,8(2):1542-1556.
[17]GONG X,SHROFF N B.Truthful Mobile Crowdsensing forStrategic Users With Private Data Quality[J].IEEE/ACM Transactions on Networking,2019,27(5):1959-1972.
[18]AN J,LIANG D,GUI X,et al.Crowdsensing Quality Control and Grading Evaluation Based on a Two-Consensus Blockchain[J].IEEE Internet of Things Journal,2019,6(3):4711-4718.
[19]YANG D,XUE G,FANG X,et al.Incentive Mechanisms forCrowdsensing:Crowdsourcing With Smartphones[J].IEEE/ACM Transactions on Networking,2016,24(3):1732-1744.
[20]XIONG J B,CHEN X H,YANG Q,et al.A Task-Oriented User Selection Incentive Mechanism in Edge-Aided Mobile Crowdsensing[J].IEEE Transactions on Network Science and Engineering,2019,7(4):2347-2360.
[21]VERGARA-LAURENS I,JAIMES L,LABRADOR M.Privacy-Preserving Mechanisms for Crowdsensing:Survey and Research Challenges[J].IEEE Internet of Things Journal,2017,4(4):855-869.
[22]KHAN F,REHMAN A U,ZHENG J,et al.Mobile crowdsen-sing:A survey on privacy-preservation,task management,assignment models,and incentives mechanisms[J].Future Generation Computer Systems,2019,100(11):456-472.
[23]GUO B,YU Z,ZHANG D,et al.From Participatory Sensing to Mobile Crowd Sensing[C]//2014 IEEE International Confe-rence on Pervasive Computing and Communication Workshops (Percom Workshops).2014:593-598.
[24]DING S,HE X,WANG J.Multiobjective Optimization Modelfor Service Node Selection Based on a Tradeoff Between Quality of Service and Resource Consumption in Mobile Crowd Sensing[J].IEEE Internet of Things Journal,2017,4(1):258-268.
[25]HUI Z,BOLOT J.Anonymization of location data does notwork:A large-scale measurement study[C]//Proceedings of the 17th Annual International Conference on Mobile Computing and Networking.2011.
[26]SHEN H,BAI G,HU Y,et al.P2TA:Privacy-Preserving Task Allocation for Edge Computing Enhanced Mobile Crowdsensing[J].Journal of Systems Architecture,2019,97:130-141.
[27]WANG Z,HU J,LV R,et al.Personalized privacy-preservingtask allocation for mobile crowdsensing[J].IEEE Transactions on Mobile Computing,2018,18(6):1330-1341.
[28]XIAO M,JIE W,SHENG Z,et al.Secret-sharing-based secure user recruitment protocol for mobile crowdsensing[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications.2017:1-9.
[29]MA L,LIU X,PEI Q,et al.Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing[J].IEEE Transactions on Services Computing,2018,12(5):786-799.
[30]YANG L,ZHANG M,HE S,et al.Crowd-empowered privacy-preserving data aggregation for mobile crowdsensing[C]//Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing.2018:151-160.
[31]XIONG J,MA R,CHEN L,et al.A personalized privacy protection framework for mobile crowdsensing in IIoT[J].IEEE Transactions on Industrial Informatics,2019,16(6):4231-4241.
[32]MIAO C,JIANG W,SU L,et al.Privacy-preserving truth discovery in crowd sensing systems[J].ACM Transactions on Sensor Networks (TOSN),2019,15(1):1-32.
[33]SUN G,SUN S,YU H,et al.Toward Incentivizing Fog-BasedPrivacy-Preserving Mobile Crowdsensing in the Internet of Vehicles[J].IEEE Internet of Things Journal,2019,7(5):4128-4142.
[34]LIANG Y,AN J,HU X Z,et al.Dynamic incentive mechanism supported privacy-preserving in mobile CrowdSensing[J].Computer Application Research,2019,36(11):3404-3409.
[35]WU H,WANG L,XUE G,et al.Enabling data trustworthiness and user privacy in mobile crowdsensing[J].IEEE/ACM Transactions on Networking,2019,27(6):2294-2307.
[36]WANG X,LIU Z,TIAN X,et al.Incentivizing crowdsensingwithlocation-privacy preserving[J].IEEE Transactions on Wireless Communications,2017,16(10):6940-6952.
[37]BASUDAN S,LIN X,SANKARANARAYANAN K.A privacy-preserving vehicular crowdsensing-based road surface condition monitoring system using fog computing[J].IEEE Internet of Things Journal,2017,4(3):772-782.
[38]SUCASAS V,MANTAS G,BASTOS J,et al.A signaturescheme with unlinkable-yet-accountable pseudonymity for privacy-preserving crowdsensing[J].IEEE Transactions on Mobile Computing,2019,19(4):752-768.
[39]XIONG J,ZHAO M,BHUIYAN M,et al.An AI-enabledThree-party Game Framework for Guaranteed Data Privacy in Mobile Edge Crowdsensing of IoT[J].IEEE Transactions on Industrial Informatics,2021,17(2):922-933.
[40]YANG M,ZHU T,LIANG K,et al.A blockchain-based location privacy-preserving crowdsensing system[J].Future Generation Computer Systems,2019,94:408-418.
[41]NI J,ZHANG K,YU Y,et al.Providing task allocation and secure deduplication for mobile crowdsensing via fog computing[J].IEEE Transactions on Dependable and Secure Computing,2018,17(3):581-594.
[42]WU D,YANG Z,YANG B,et al.From Centralized Managementto Edge Collaboration:A Privacy-Preserving Task Assignment Framework for Mobile Crowd Sensing[J].IEEE Internet of Things Journal,2021,8(6):4579-4589.
[43]ZHENG Y,DUAN H,WANG C.Learning the Truth Privately and Confidently:Encrypted Confidence-Aware Truth Discovery in Mobile Crowdsensing[J].IEEE Transactions on Information Forensics and Security,2018,13(10):2475-2489.
[44]WANG J,LI M,HE Y,et al.A blockchain based privacy-preserving incentive mechanism in crowdsensing applications[J].IEEE Access,2018,6:17545-17556.
[45]VERGARA-LAURENS I,MENDEZ D,LABRADOR M.Privacy,quality of information,and energy consumption in Participatory Sensing systems[C]//2014 IEEE International Conference on Pervasive Computing and Communications (PerCom).IEEE,2014:199-207.
[46]AN J,YANG H,GUI X,et al.TCNS:node selection with privacy protection in crowdsensing based on twice consensuses of blockchain[J].IEEE Transactions on Network and Service Management,2019,16(3):1255-1267.
[47]NI J,ZHANG K,XIA Q,et al.Enabling strong privacy preservation and accurate task allocation for mobile crowdsensing[J].IEEE Transactions on Mobile Computing,2019,19(6):1317-1331.
[48]WU H,WANG L,XUE G.Privacy-aware task allocation anddata aggregation in fog-assisted spatial crowdsourcing[J].IEEE Transactions on Network Science and Engineering,2019,7(1):589-602.
[49]MAN H A,SUSILO W,YI M.Constant-Size Dynamic k-TAA[C]//5th International Conference on Security and Cryptography for Networks,Lecture Notes in Computer Science.Maiori,2006:111-125.
[50]YANG P,GUI X,JIAN A,et al.An Efficient Secret Key Homomorphic Encryption Used in Image Processing Service[J].Security & Communication Networks,2017,2017:1-11.
[51]JIANG J,ZHENG Y,SHI Z,et al.A Practical System for Privacy-Aware Targeted Mobile Advertising Services[J].IEEE Transactions on Services Computing,2020,13(3):410-424.
[52]LIN J,YANG D,LI M,et al.Frameworks for Privacy-Preserving Mobile Crowdsensing Incentive Mechanisms[J].IEEE Transactions on Mobile Computing,2018,17(8):1851-1864.
[53]SWEENEY L.k-anonymity:A model for protecting privacy[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.
[54]DENT A W,ZHENG Y,YUNG M.Practical Signcryption[M].Berlin:Springer,2010.
[55]ZMAB C,JMA C,YMAB C,et al.Privacy-preserving and high-accurate outsourced disease predictor on random forest[J].Information Sciences,2019,496:225-241.
[56]civil code.civil code(WSCI)[OL].http://www.npc.gov.cn/npc/c35174/mfdgfbca.shtml.
[57]LI T,JUNG T,QIU Z,et al.Scalable Privacy-Preserving Parti-cipant Selection for Mobile Crowdsensing Systems:Participant Grouping and Secure Group Bidding[J].IEEE Transactions on Network Science & Engineering,2020,7(2):855-868.
[58]ZHENG Y,DUAN H,WANG C.Learning the truth privately and confidently:Encrypted confidence-aware truth discovery in mobile crowdsensing[J].IEEE Transactions on Information Forensics and Security,2018,13(10):2475-2489.
[59]QIU F,WU F,CHEN G.Privacy and Quality Preserving Multimedia Data Aggregation for Participatory Sensing Systems[J].IEEE Transactions on Mobile Computing,2015,14(6):1287-1300.
[60]ZHAO C,YANG S,MCCANN J A.On the Data Quality in Privacy-Preserving Mobile Crowdsensing Systems with Untruthful Reporting[J].IEEE Transactions on Mobile Computing,2021,20(2):647-661.
[61]SONG Z,LI Z,CHEN X.Local Differential Privacy Preserving Mechanism for Multi-attribute Data in Mobile Crowdsensing with Edge Computing[C]//2019 IEEE International Conference on Smart Internet of Things (SmartIoT).IEEE,2019:283-290.
[62]CHEN JW,MA H D,ZHAO D,et al.Correlated Differential Privacy Protection for Mobile Crowdsensing[J].IEEE Transactions on Big Data,2021,7(4):784-795.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 吕由, 吴文渊.
隐私保护线性回归方案与应用
Privacy-preserving Linear Regression Scheme and Its Application
计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190
[5] 王健.
基于隐私保护的反向传播神经网络学习算法
Back-propagation Neural Network Learning Algorithm Based on Privacy Preserving
计算机科学, 2022, 49(6A): 575-580. https://doi.org/10.11896/jsjkx.211100155
[6] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
[7] 王美珊, 姚兰, 高福祥, 徐军灿.
面向医疗集值数据的差分隐私保护技术研究
Study on Differential Privacy Protection for Medical Set-Valued Data
计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032
[8] 吕由, 吴文渊.
基于同态加密的线性系统求解方案
Linear System Solving Scheme Based on Homomorphic Encryption
计算机科学, 2022, 49(3): 338-345. https://doi.org/10.11896/jsjkx.201200124
[9] 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉.
基于差分隐私的K-means算法优化研究综述
Review of K-means Algorithm Optimization Based on Differential Privacy
计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008
[10] 金华, 朱靖宇, 王昌达.
视频隐私保护技术综述
Review on Video Privacy Protection
计算机科学, 2022, 49(1): 306-313. https://doi.org/10.11896/jsjkx.201200047
[11] 雷羽潇, 段玉聪.
面向跨模态隐私保护的AI治理法律技术化框架
AI Governance Oriented Legal to Technology Bridging Framework for Cross-modal Privacy Protection
计算机科学, 2021, 48(9): 9-20. https://doi.org/10.11896/jsjkx.201000011
[12] 王辉, 朱国宇, 申自浩, 刘琨, 刘沛骞.
基于用户偏好和位置分布的假位置生成方法
Dummy Location Generation Method Based on User Preference and Location Distribution
计算机科学, 2021, 48(7): 164-171. https://doi.org/10.11896/jsjkx.200800069
[13] 王乐业.
群智感知中的地理位置本地化差分隐私机制:现状与机遇
Geographic Local Differential Privacy in Crowdsensing:Current States and Future Opportunities
计算机科学, 2021, 48(6): 301-305. https://doi.org/10.11896/jsjkx.201200223
[14] 季琰, 戴华, 姜莹莹, 杨庚, 易训.
面向混合云的可并行多关键词Top-k密文检索技术
Parallel Multi-keyword Top-k Search Scheme over Encrypted Data in Hybrid Clouds
计算机科学, 2021, 48(5): 320-327. https://doi.org/10.11896/jsjkx.200300160
[15] 郭蕊, 芦天亮, 杜彦辉.
WSN中基于目标决策的源位置隐私保护方案
Source-location Privacy Protection Scheme Based on Target Decision in WSN
计算机科学, 2021, 48(5): 334-340. https://doi.org/10.11896/jsjkx.200400099
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!