计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 156-161.doi: 10.11896/jsjkx.220100061
苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯
MIAO Qi-guang, XIN Wen-tian, LIU Ru-yi, XIE Kun, WANG Quan, YANG Zong-kai
摘要: 智慧教育即教育信息化,是利用现代信息技术的新一代教育模式,智慧行为分析是智慧教育系统的核心组成。在面对复杂的教室应用场景时,针对传统的行为识别分类算法的精确性与时效性都存在严重不足的问题,提出了一种基于分离与注意力机制的图卷积(Depthwise Separable Attention Graph Convolutional Network,DSA-GCN)骨架动作识别算法。首先,为解决传统算法在通道域信息聚合天生不充分的难题,通过逐点卷积进行多维通道映射,将时空图卷积对输入骨骼序列的原始时空信息的保护能力与深度可分离卷积在空间和通道特征学习上的分离能力相结合,以增强模型特征学习与抽象表达性。其次,采用多维度融合的注意力机制,在空间卷积域利用自注意力与通道注意力机制来提升模型的动态敏感性,在时间卷积域利用时间与通道注意力融合法来增强对关键帧的判别力。实验结果表明,在NTU RGB+D 和 N-UCLA两个大型数据集上,DSA-GCN都获得了优异的性能和效能表现,证明了模型对通道域信息聚合能力的提升。
中图分类号:
[1]VEMULAPALLI R,ARRATE F,CHELLAPPA R.Human action recognition by representing 3d skeletons as points in a lie group[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:588-595. [2]FERNANDO B,GAVVES E,ORAMAS J M,et al.Modelingvideo evolution for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:5378-5387. [3]DU Y,WANG W,WANG L.Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1110-1118. [4]YAN S,XIONG Y,LIN D.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Thirty-second AAAI Conference on Artificial Intelligence.2018. [5]SHI L,ZHANG Y,CHENG J,et al.Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12026-12035. [6]LIU Z,ZHANG H,CHEN Z,et al.Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:143-152. [7]YE F,PU S,ZHONG Q,et al.Dynamic GCN:Context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:55-63. [8]DEGARDIN B,LOPES V,PROENÇA H.REGINA-Reasoning Graph Convolutional Networks in Human Action Recognition[J].arXiv:2105.06711,2021. [9]QIN Z,LIU Y,JI P,et al.Leveraging Third-Order Features in Skeleton-Based Action Recognition[J].arXiv:2105.01563,2021. [10]CHEN Z,LI S,YANG B,et al.Multi-Scale Spatial TemporalGraph Convolutional Network for Skeleton-Based Action Re-cognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:1113-1122. [11]CHEN Y,ZHANG Z,YUAN C,et al.Channel-wise topologyrefinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Confe-rence on Computer Vision.2021:13359-13368. [12]SI C,JING Y,WANG W,et al.Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:103-118. [13]TANG Y,TIAN Y,LU J,et al.Deep progressive reinforcement learning for skeleton-based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5323-5332. [14]ZHANG X,XU C,TIAN X,et al.Graph edge convolutionalneural networks for skeleton-based action recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(8):3047-3060. [15]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [16]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [17]HAMMOND D K,VANDERGHEYNST P,GRIBONVAL R.Wavelets on graphs via spectral graph theory[J].Applied and Computational Harmonic Analysis,2011,30(2):129-150. [18]SHAHROUDY A,LIU J,NG T T,et al.Ntu rgb+ d:A large scale dataset for 3d human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1010-1019. [19]WANG J,NIE X,XIA Y,et al.Cross-view action modeling,learning and recognition[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2014:2649-2656. |
[1] | 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐 Sequence Recommendation Based on Global Enhanced Graph Neural Network 计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085 |
[2] | 戴禹, 许林峰. 基于文本行匹配的跨图文本阅读方法 Cross-image Text Reading Method Based on Text Line Matching 计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032 |
[3] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[4] | 熊丽琴, 曹雷, 赖俊, 陈希亮. 基于值分解的多智能体深度强化学习综述 Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization 计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112 |
[5] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[6] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[9] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[10] | 汪鸣, 彭舰, 黄飞虎. 基于多时间尺度时空图网络的交通流量预测模型 Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction 计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188 |
[11] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[12] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[13] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[14] | 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚. 融合双向门控循环单元和注意力机制的软件自承认技术债识别方法 Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism 计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075 |
[15] | 彭双, 伍江江, 陈浩, 杜春, 李军. 基于注意力神经网络的对地观测卫星星上自主任务规划方法 Satellite Onboard Observation Task Planning Based on Attention Neural Network 计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093 |
|