计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 192-196.doi: 10.11896/jsjkx.210100164
瞿中, 陈雯
QU Zhong, CHEN Wen
摘要: 混凝土路面的裂缝检测是确保道路安全的重要基础任务。针对混凝土路面的复杂背景和裂缝本身复杂的拓扑结构,提出了一种基于空洞卷积和多特征融合的混凝土路面裂缝检测网络,该网络采用基于U-Net的编码-解码结构。在编码阶段,使用改进的残差网络Res2Net提高特征提取能力;在网络的中间部分,使用串联和并联相结合的不同空洞率的空洞卷积,从而在增加特征点的感受野的同时不会降低特征图的分辨率;在解码阶段,融合了从低层卷积到高层卷积的多尺度和多级特征,提高了裂缝检测的准确性。为证明所提算法的有效性和准确性,将其与现有的部分检测方法进行了比较并使用F-score来评估检测性能。在多个混凝土路面数据集上的实验结果表明,该算法提高了裂缝检测的准确性,具有较好的鲁棒性。
中图分类号:
[1]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Compu-ter-Assisted Intervention.2015:234-241. [2]GAO S,CHENG M M,ZHAO K,et al.Res2net:A New Multi-scale Backbone Architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,34(2):652-662. [3]HANZAEI S H,AFSHAR A,BARAZANDEH F.AutomaticDetection and Classification of the Ceramic Tiles’ Surface Defects[J].Pattern Recognition,2017,66(s1):174-189. [4]OLIVEIRA H,CORREIA P L.Automatic Road Crack Segmentation Using Entropy and Image Dynamic Thresholding[C]//17th European Signal Processing Conference.2009:622-626. [5]LIU F,XU G,YANG Y,et al.Novel Approach to Pavement Cracking Automatic Detection Based on Segment Extending[C]//IEEE International Symposium on Knowledge Acquisition and Modeling.2008:610-614. [6]NEJAD F M,ZAKERI H.An Optimum Feature ExtractionMethod based on Wavelet-Radon Transform and Dynamic Neural Network for Pavement Distress Classification[J].Expert Systems with Applications,2011,38(8):9442-9460. [7]MA C X,ZHAO C X,HU Y,et al.Road Crack Detection based on NSCT and Morphology[J].Journal of Computer-Aided Design & Computer Graphics,2009,21(12):1761-1767. [8]AMHAZ R,CHAMBON S,IDIER J,et al.Automatic Crack Detection on Two-Dimensional Pavement Images:An Algorithm Based on Minimal Path Selection[J].IEEE Transactions Intelligence Transport System,2016,17(10):2718-2729. [9]FERNANDES K,CIOBANU L.Pavement Pathologies Classification Using Graph-Based Features[C]//IEEE International Conference on Image Processing.2014:793-797. [10]SHI Y,CUI L,QI Z,et al.Automatic Road Crack Detectionusing Random Structured Forests[J].IEEE Transactions Intelligence Transport System,2016,17(12):3434-3445. [11]OLIVEIRA H,CORREIA P.Automatic Road Crack Detectionand Characterization[J].IEEE Transactions Intelligence Transport System,2013,14(1):155-168. [12]ZOU Q,ZHANG Z,LI Q X,et al.DeepCrack:Learning Hierarchical Convolutional Features for Crack Detection[J].IEEE Transactions Image Processing,2019,28(3):1498-1512. [13]LIU Y,YAO J,LU X,et al.DeepCrack:A Deep Hierarchical Feature Learning Architecture for Crack Segmentation[J].Neurocomputing,2019,338(3):139-153. [14]YANG F,ZHANG L,YU S,et al.Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection[J].IEEE Transactions Intelligence Transport System,2020,21(4):1525-1535. [15]XIE S,TU Z.Holistically-Nested Edge Detection[C]//2015IEEE International Conference on Computer Vision.2015:1395-1403. [16]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//IEEE Conference on Computer Vision &Pattern Recognition.2016:770-778. [17]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Seg-Net:A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [18]LIU Y,CHEN M M,HU X,et al.Richer Convolutional Fea-tures for Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(8):1939-1946. |
[1] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[2] | 高荣华, 白强, 王荣, 吴华瑞, 孙想. 改进注意力机制的多叉树网络多作物早期病害识别方法 Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism 计算机科学, 2022, 49(6A): 363-369. https://doi.org/10.11896/jsjkx.210500044 |
[3] | 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 |
[4] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[5] | 韩红旗, 冉亚鑫, 张运良, 桂婕, 高雄, 易梦琳. 基于共同子空间分类学习的跨媒体检索研究 Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning 计算机科学, 2022, 49(5): 33-42. https://doi.org/10.11896/jsjkx.210200157 |
[6] | 赵人行, 徐频捷, 刘瑶. 基于深度卷积残差网络的心电单导联房颤检测方法 ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network 计算机科学, 2022, 49(5): 186-193. https://doi.org/10.11896/jsjkx.220200002 |
[7] | 李鹏祖, 李瑶, Ibegbu Nnamdi JULIAN, 孙超, 郭浩, 陈俊杰. 基于多特征融合的重叠组套索脑功能超网络构建及分类 Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion 计算机科学, 2022, 49(5): 206-211. https://doi.org/10.11896/jsjkx.210300049 |
[8] | 高心悦, 田汉民. 基于改进U-Net网络的液滴分割方法 Droplet Segmentation Method Based on Improved U-Net Network 计算机科学, 2022, 49(4): 227-232. https://doi.org/10.11896/jsjkx.210300193 |
[9] | 张红民, 李萍萍, 房晓冰, 刘宏. 改进YOLOv3网络模型的人体异常行为检测方法 Human Abnormal Behavior Detection Method Based on Improved YOLOv3 Network Model 计算机科学, 2022, 49(4): 233-238. https://doi.org/10.11896/jsjkx.210300251 |
[10] | 祝一帆, 王海涛, 李可, 吴贺俊. 一种高精度路面裂缝检测网络结构:Crack U-Net Crack U-Net:Towards High Quality Pavement Crack Detection 计算机科学, 2022, 49(1): 204-211. https://doi.org/10.11896/jsjkx.210100128 |
[11] | 牛富生, 郭延哺, 李维华, 刘文洋. 基于序列特征融合的蛋白质可溶性预测 Protein Solubility Prediction Based on Sequence Feature Fusion 计算机科学, 2022, 49(1): 285-291. https://doi.org/10.11896/jsjkx.201100117 |
[12] | 郭琳, 李晨, 陈晨, 赵睿, 范仕霖, 徐星雨. 基于通道注意递归残差网络的图像超分辨率重建 Image Super-resolution Reconstruction Using Recursive ResidualNetwork Based on ChannelAttention 计算机科学, 2021, 48(8): 139-144. https://doi.org/10.11896/jsjkx.200500150 |
[13] | 王施云, 杨帆. 基于U-Net特征融合优化策略的遥感影像语义分割方法 Remote Sensing Image Semantic Segmentation Method Based on U-Net Feature Fusion Optimization Strategy 计算机科学, 2021, 48(8): 162-168. https://doi.org/10.11896/jsjkx.200700182 |
[14] | 许华杰, 张晨强, 苏国韶. 基于深层卷积残差网络的航拍图建筑物精确分割方法 Accurate Segmentation Method of Aerial Photography Buildings Based on Deep Convolutional Residual Network 计算机科学, 2021, 48(8): 169-174. https://doi.org/10.11896/jsjkx.200500096 |
[15] | 暴雨轩, 芦天亮, 杜彦辉, 石达. 基于i_ResNet34模型和数据增强的深度伪造视频检测方法 Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation 计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258 |
|