计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 49-55.doi: 10.11896/jsjkx.210700074
王润安, 邹兆年
WANG Run-an, ZOU Zhao-nian
摘要: 查询执行时间预测(Query Performance Prediction,QPP)是数据库系统中一个重要的研究问题。当数据库系统中存在并发执行的事务时,现有的QPP方法无法在不改变数据库查询性能的前提下建立准确的QPP模型。为此,提出了一种基于物理操作的查询执行时间预测新方法,该方法以查询的物理操作为单位建立单元预测模型,根据查询计划将单元预测模型组合为完整的QPP模型,把能够刻画数据库系统并发状态的统计信息纳入模型的输入特征。所提方法只须使用DBMS提供的基本手段即可获取构建模型所需的数据库统计信息,无须改变DBMS,也不会影响数据库系统上原有工作负载的执行。实验结果表明,所提方法无论在OLTP还是OLAP应用中,在不同的查询计划和并发度下的预测准确性均高于其他对比方法。
中图分类号:
[1]ZOLAKTAF Z,MILANI M,POTTINGER R.Facilitating SQL Query Composition and Analysis[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data.Association for Computing Machinery,2020:209-224. [2]HUAWEI.openGauss Database[EB/OL].https://opengauss.org/zh/. [3]BABCOCK B,CHAUDHURI S.Towards a robust query optimizer:A principled and practical approach[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data.2005:119-130. [4]MARCUS R,PAPAEMMANOUIL O.Plan-structured deepneural network models for query performance prediction[C]//Proceedings of the VLDB Endowment.2019:1733-1746. [5]DUGGAN J,PAPAEMMANOUIL O,UPFAL E.Performance Prediction for Concurrent Database Workloads[C]//Procee-dings of the ACM SIGMOD International Conference on Management of Data.2011:337-348. [6]ZHOU X,SUN J,LI G,et al.Query performance prediction for concurrent queries using graph embedding[J].Proceedings of the VLDB Endowment,2020,13(9):1416-1428. [7]WU W,CHI Y,ZHU S,et al.Predicting query execution time:Are optimizer cost models really unusable?[C]//International Conference on Data Engineering.2013:1081-1092. [8]XU X,LIU C,SONG D.SQLNet:Generating Structured Queries from Natural Language Without Reinforcement Learning[J].arXiv:1711.04436,2017. [9]AKDERE M,ÇETINTEMEL U,RIONDATO M,et al.Lear-ning-based query performance modeling and prediction[C]//International Conference on Data Engineering.2012:390-401. [10]WU W,CHI Y,HACIGÜMÜS H,et al.Towards predictingquery execution time for concurrent and dynamic database workloads[J].Proceedings of the VLDB Endowment,2013,6(10):925-936. [11]ABOULNAGA A,CHAUDHURI S.Self-tuning histograms[J].ACM SIGMOD Record,1999,28(2):181-192. [12]KIPF A,KIPF T,RADKE B,et al.Learned Cardinalities:Estimating Correlated Joins with Deep Learning[C]//9th Biennial Conference on Innovative Data Systems Research.Asilomar,CA,USA,2019:13-16. [13]TAN J,ZHANG T,LI F,et al.iBTune:Individualized Buffer Tuning for Large-scale Cloud Databases[J].Proceedings of the VLDB Endowment,2019,12(10):1221-1234. [14]ZHANG J,LIU Y,ZHOU K,et al.An end-to-end automatic cloud database tuning system using deep reinforcement learning[C]//Proceedings of the ACM SIGMOD International Confe-rence on Management of Data.Association for Computing Machinery.2019:415-432. [15]MARCUS R,PAPAEMMANOUIL O.Deep ReinforcementLearning for Join Order Enumeration[C]//Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management.New York,USA:ACM,2018:1-4. [16]POSTGRESQ L.Postgres monitoring stats[EB/OL].https://www.postgresql.org/docs/13/monitoring-stats.html. [17]LEIS V,GUBICHEV A,MIRCHEV A,et al.How Good Are Query Optimizers,Really?[J].Proceedings of the VLDB Endowment,2016,9(3):204-215. |
[1] | 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐 Sequence Recommendation Based on Global Enhanced Graph Neural Network 计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085 |
[2] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[3] | 宁晗阳, 马苗, 杨波, 刘士昌. 密码学智能化研究进展与分析 Research Progress and Analysis on Intelligent Cryptology 计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053 |
[4] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[5] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[6] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[7] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[8] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[9] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[10] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[11] | 彭双, 伍江江, 陈浩, 杜春, 李军. 基于注意力神经网络的对地观测卫星星上自主任务规划方法 Satellite Onboard Observation Task Planning Based on Attention Neural Network 计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093 |
[12] | 费星瑞, 谢逸. 基于HMM-NN的用户点击流识别 Click Streams Recognition for Web Users Based on HMM-NN 计算机科学, 2022, 49(7): 340-349. https://doi.org/10.11896/jsjkx.210600127 |
[13] | 赵冬梅, 吴亚星, 张红斌. 基于IPSO-BiLSTM的网络安全态势预测 Network Security Situation Prediction Based on IPSO-BiLSTM 计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103 |
[14] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[15] | 杨炳新, 郭艳蓉, 郝世杰, 洪日昌. 基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用 Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition 计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070 |
|