计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 299-307.doi: 10.11896/jsjkx.220900163

• 信息安全 • 上一篇    下一篇

使用Wi-Fi感知连续行为动作的跨域身份认证

孔浩, 俞嘉地   

  1. 上海交通大学电子信息与电气工程学院 上海200240
  • 收稿日期:2022-09-17 修回日期:2022-12-23 出版日期:2023-10-10 发布日期:2023-10-10
  • 通讯作者: 俞嘉地(jiadiyu@sjtu.edu.cn)
  • 作者简介:(haokong@shu.edu.cn)
  • 基金资助:
    国家自然科学基金(62172277)

Cross-domain User Authentication via Wi-Fi Sensing of Continuous Activities

KONG Hao, YU Jiadi   

  1. School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
  • Received:2022-09-17 Revised:2022-12-23 Online:2023-10-10 Published:2023-10-10
  • About author:KONG Hao,born in 1996,Ph.D,assistant professor,is a member of China Computer Federation.His main research interests include mobile computing and wireless sensing.YU Jiadi,born in 1975,Ph.D,associate professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include mobile computing,IOT,and wireless sensing.
  • Supported by:
    National Natural Science Foundation of China(62172277).

摘要: 目前,面向智能物联网场景的用户身份认证方法正蓬勃发展。一些工作利用室内环境中广泛存在的Wi-Fi信号感知用户的行为动作,并提取用户行为动作中蕴含的个体行为的独特性来实现用户身份认证。然而,用户必须在已知域背景(环境、位置、方向)下执行独立的行为动作,系统才能有效地进行身份认证。为突破现有方法的限制,提出了使用Wi-Fi信号感知人体连续行为动作的跨域身份认证系统CroAuth,其能够在用户执行连续行为动作时实现跨环境、位置、方向的用户身份认证。为突破执行独立行为动作的限制,提出了基于动态时间规整的连续行为动作分离算法,在用户多样化的连续行为中分离出特定的行为动作序列,以实现有效的行为信息提取。之后,提出了基于孪生神经网络的跨域身份认证方法,提取域无关的个体行为特征,并进一步利用知识蒸馏方法构建小样本学习的跨域身份认证模型,以实现在不同环境、位置和方向下的用户身份认证。实验结果表明,CroAuth能够在用户执行多样化的连续行为动作时,在跨环境、位置、方向的场景下对用户身份进行认证。

关键词: Wi-Fi感知, 身份认证, 连续行为, 跨域场景, 孪生神经网络, 小样本学习

Abstract: Nowadays,Internet of Things(IoT)-based user authentication has been gradually developed.Some works utilize widespread Wi-Fi signals to sense user activities and extract individual uniqueness for user authentication.However,users must perform an independent activity under a known domain(i.e.,environment,location,and orientation),before the system can conduct user authentication.In order to break through the limitation of existing methods,this paper proposes a cross-domain user authentication method based on Wi-Fi signals,CroAuth,to realize user authentication across environments,locations,and orientations when users perform continuous activities.To release the requirement of performing independent activities,this paper proposes a continuous activity separation algorithm based on dynamic time warping,which can separate specific activity sequences from diversified continuous activities.Then,this paper designs a cross-domain user authentication method based on siamese neural network to extract domain-independent features,which can characterize essential behavioral uniqueness of each user under various environments,locations,and orientations.Finally,a knowledge distillation method is utilized to construct a few-shot cross-domain user authentication model.Experimental results show that CroAuth can authenticate users under cross-environment,location,and orientation scenarios when users perform diversified continuous activities.

Key words: Wi-Fi sensing, User authentication, Continuous activities, Cross-domain scenario, Siamese neural network, Few-short learning

中图分类号: 

  • TP391
[1]ZENG Y Z,PATHAK P H,MOHAPATRA P.WiWho:Wi-Fi-based person identification in smart spaces[C]//2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN).IEEE,2016:1-12.
[2]ZHANG J,WEI B,HU W,et al.Wi-Fi-id:Human identification using Wi-Fi signal[C]//2016 International Conference on Distributed Computing in Sensor Systems(DCOSS).IEEE,2016:75-82.
[3]WANG W,LIU A X,SHAHZAD M.Gait recognition using Wi-Fi signals[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.2016:363-373.
[4]HONG F,WANG X,YANG Y,et al.WFID:Passive device-freehuman identification using Wi-Fi signal[C]//Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems:Computing,Networking and Services.2016:47-56.
[5]SHI C,LIU J,LIU H B,et al.Smart user authentication through actuation of daily activities leveraging Wi-Fi-enabled IoT[C]//Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing.2017:1-10.
[6]ZHENG R Y,ZHAO Y C,CHEN B.Device-Free and RobustUser Identification in Smart Environment Using Wi-Fi Signal[C]//2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications(ISPA/IUCC).IEEE,2017:1039-1046.
[7]SHAHZAD M,ZHANG S H.Augmenting user identification with Wi-Fi based gesture recognition [J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Techno-logies,2018,2(3):1-27.
[8]KONG H,LU L,YU J D,et al.FingerPass:Finger gesture-based continuous user authentication for smart homes using commodity Wi-Fi[C]//Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing.2019:201-210.
[9]ZOU H,ZHOU Y X,YANG J F,et al.Freecount:Device-free crowd counting with commodity Wi-Fi[C]//2017 IEEE Global Communications Conference(GLOBECOM 2017).IEEE,2017:1-6.
[10]WANG X,TANAKA J.GesID:3D gesture authentication based on depth camera and one-class classification [J].Sensors,2018,18(10):3265.
[11]WANG C,CHANG J.CSI Cross-domain Gesture RecognitionMethod Based on 3D Convolutional Neural Network[J].Computer Science,2021,48(8):322-327.
[12]QIAN K,WU C S,YANG Z,et al.Widar:Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi[C]//Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing.2017:1-10.
[13]QIAN K,WU C S,ZHANG Y,et al.Widar2.0:Passive human tracking with a single wi-fi link[C]//Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services.2018:350-361.
[14]ZHOU C L,CHEN J D,HUANG F.WiFi-PDR Fusion Indoor Positioning Technology Based on Unscented Particle Filter[J].Computer Science,2022,49(6A):606-611.
[15]JIANG W,MIAO C L,MA F L,et al.Towards environment independent device free human activity recognition[C]//Procee-dings of the 24th Annual International Conference on Mobile Computing and Networking.2018:289-304.
[16]ZHANG J,TANG Z Y,LI M,et al.CrossSense:Towards cross-site and large-scale Wi-Fi sensing[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking.2018:305-320.
[17]ZHENG Y,ZHANG Y,QIAN K,et al.Zero-effort cross-domain gesture recognition with Wi-Fi[C]//Proceedings of the 17th Annual International Conference on Mobile Systems,Applications,and Services.2019:313-325.
[18]LI C N,LIU M N,CAO Z C.WiHF:Enable User Identified Gesture Recognition with Wi-Fi[C]//IEEE Conference on Computer Communications(INFOCOM 2020).IEEE,2020:586-595.
[19]WANG W,LIU A X,SHAHZAD M,et al.Understanding and modeling of Wi-Fi signal based human activity recognition[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking.2015:65-76.
[20]GRIFFIN D,LIM J.Signal estimation from modified short-time Fourier transform[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1984,32(2):236-243.
[21]BERNDT D J,CLIFFORD J.Using dynamic time warping tofind patterns in time series[C]//KDD Workshop.1994,10(16):359-370.
[22]CHICCO D.Siamese neural networks:An overview[J].Artificial Neural Networks,2021,2190:73-94.
[23]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network [J].arXiv:1503.02531,2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!