计算机科学 ›› 2023, Vol. 50 ›› Issue (11): 210-219.doi: 10.11896/jsjkx.221000129
徐杰, 周新志
XU Jie, ZHOU Xinzhi
摘要: 粒子群优化(PSO)算法依靠粒子之间的合作行为,使其在解决诸多优化问题上显示出极大的智能。然而,由于寻优机制,粒子很容易突破可行域的边界限制,若能使该行为在寻优过程中具有明确的指导意义将有助于提高算法的优化性能;更关键的是,原始粒子群优化算法中粒子的学习对象主要集中在全局最佳粒子上,这种更新机制无疑加速了种群多样性的损失,并使种群倾向于陷入局部最优。为了进一步提高求解复杂问题时的种群多样性和收敛精度,提出了一种基于边界自适应技术的精英交互学习粒子群算法(A-EIPSO)。该算法首先在原有的PSO算法中引入了新的边界处理技术,根据越界粒子的历史位置信息和越界距离自适应地赋予粒子在解空间内的分布特征;接着在多种群技术的基础上设计了一种精英学习策略来促进子群间社会信息的交换,并由精英粒子代替全局最佳粒子指导各子群内粒子的优化行为。实验结果表明,在大多数情况下,自适应处理技术保证粒子在搜索空间内实现均匀探索的同时显著提升了PSO算法的性能。此外,还将A-EIPSO在CEC2017基准测试套件上与5种先进的粒子群变体算法及2种主流的进化算法进行了比较。结果表明,A-EIPSO在不同类型函数上均表现出了优越的性能,改进了大多数优化问题的收敛精度,优于其他代表性的PSO变体算法和进化算法。
中图分类号:
[1]EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory [C]//Proceedings of International Symposium on Micro Machine and Human Science(ISMMHS’95).Nagoya,Japan,1995:39-43. [2]EBERHART R C,KENNEDY J.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Network(CNN’95).Perth,Australia,1995:1942-1948. [3]HUANG K Y.A hybrid particle swarm optimization approach for clustering and classification of datasets[J].IEEE Transactions on Power Systems,2011,24(3):420-426. [4]YAN T T,LI Z.Intelligent skin cancer detection using enhanced particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2018,158(20):118-135. [5]HO S Y,LIN H S,LIAUH W H.OPSO:Orthogonal particle swarm optimization and its application to task assignment pro-blems[J].IEEE Transactions on Systems Man Cybernetics-Systems,B,2008,38(2):288-289. [6]ZHANG S,XU J,LEE L H.Optimal computing budget allocation for particle swarm optimization in stochastic optimization[J].IEEE Transactions on Evolutionary Computation,2017,21(2):206-219. [7]YANG X S,DEB S,ZHAO Y X,et al.Swarm intelligence:past,present and future[J].Soft Computing,2018,22(14):5923-5933. [8]HELWIG S,WANKA R.Theoretical analysis of initial particle swarm behavior [C]//Proceedings of the International Confe-rence on Parallel Problem Solving from Nature.DBLP,PPSN,2008:889-898. [9]KADIRKAMANATHAN V,SELVARAJAH K,FLEMING PJ.Stability analysis of the particle dynamics in particle swarm optimizer[J].IEEE Transactions on Evolutionary Computation,2006,10(3):245-255. [10]WEI B,XIA X,YU F,et al.Multiple adaptive strategies based particle swarm optimization algorithm[J].Swarm and Evolutionary Computation,2020,57(23):100731. [11]XU S,RAHMAT-SAMII Y.Boundary conditions in particleswarm optimization revisited[J].IEEE Transactions on Antennas and Propagation,2007,55(3):760-765. [12]LAMPINEN J.A constraint handling approach for the differential evolution algorithm [C]//Proceedings of the Congress on Evolutionary Computation.2002:1468-1473. [13]JUAREZ-CASTILLO E,ACOSTA-MESA H G,MEZURA-MONTES E.Empirical study of bound constraint-handling methods in Particle Swarm Optimization for constrained search spaces [C]//Evolutionary Computation.IEEE,2017:604-611. [14]ZHANG W J,XIE X F,BI D C.Handling boundary constraints for numerical optimization by particle swarm flflying in periodic search space [C]//Proceedings of the IEEE Congress on Evolutionary Computation.2004:2307-2311. [15]HELWIG S,BRANKE J,MOSTAGHIM S.Experimental ana-lysis of bound handling techniques in Particle Swarm Optimization[J].IEEE Transactions on Evolutionary Computation,2013,17(2):259-271. [16]BOSE D,BISWAS S,KUNDU S,et al.A strategy pool adaptive artificial bee colony algorithm for dynamic environment through multi-population approach [C]//Proceedings of the Interna-tional Conference on Swarm,Evolutionary,and Memetic Computing.2012:611-619. [17]PERAM T,VEERAMACHANENI K,MOHAN C K.Fitness-distance-ratio based particle swarm optimization [C]//Procee-dings of the 2003 IEEE Swarm Intelligence Symposium.2003:174-181. [18]LIANG J J,SUGANTHAN P N.Dynamic multi-swarm particle swarm optimizer[C]//Proceedings of the IEEE Swarm Intelligence Symposium.2005:124-129. [19]LYNN N,SUGANTHAN.Heterogeneous comprehensive lear-ning particle swarm optimization with enhanced exploration and exploitation[J].Swarm & Evolutionary Computation,2015,24(5):11-24. [20]LIANG B,ZHAO Y,LI Y.A hybrid particle swarm optimization with crisscross learning strategy[J].Engineering Applications of Artificial Intelligence,2021,105(3):104418. [21]KARABOGA D,BASTURK B.A powerful and efficient algorithm for numerical function optimization:Artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471. [22]GANDOMI A H,KASHANI A R.Evolutionary bound con-straint handling for particle swarm optimization[C]//International Symposium on Computational & Business Intelligence.IEEE,2016:148-152. [23]GANDOMI A H,KASHANI A R,ZEIGHAMI F.Retainingwall optimization using interior search algorithm with different bound constraint handling[J].International Journal for Numerical & Analytical Methods in Geomechanics,2017,41(11):1304-1331. [24]LIANG J J,SUGANTHAN P N.Dynamic multi-swarm particle swarm optimizer[C]//Proceedings of the IEEE Swarm Intelligence Symposium.IEEE,2005:124-129. [25]RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496. [26]GONG Y J,LI J J,ZHOU Y C,et al.Genetic learning particle swarm optimization[J].IEEE Transactions on Cybernetics,2016,46(10):2277-2290. [27]AWAD N H,ALI M Z,LIANG J J,et al.Problem Defifinitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization[R].Jordan University of Science and Technology,and Zhengzhou University,Technical report,Nanyang Technological University,2017. [28]BRATTON D,KENNEDY J.Defifining a standard for particle swarm optimization [C]//Proceedings IEEE Swarm Intelligence Symposium.2007:120-127. [29]TANABE R,FUKUNAGA A.Success-history based parameter adaptation for differential evolution[C]//2013 IEEE Congress on Evolutionary Computation.2013:71-78. [30]WANG S,LIU G,GAO M,et al.Heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer with two mutation operators[J].Information Sciences,2020,540(12):175-201. [31]DERRAC J,GARCÍA S,MOLINA D,et al.A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation,2011,1(1):3-18. [32]DERRAC J,GARCIA S,MOLINA D.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm & Evolutionary Computation,2011,1(1):3-18. |
|