计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230200068-5.doi: 10.11896/jsjkx.230200068

• 人工智能 • 上一篇    下一篇

基于话题注意力和依存句法信息的文本立场分析

康书铭, 朱焱   

  1. 西南交通大学计算机与人工智能学院 成都 611756
  • 发布日期:2023-11-09
  • 通讯作者: 朱焱(yzhu@swjtu.edu.cn)
  • 作者简介:(ksm0801@qq.com)
  • 基金资助:
    四川省科技计划(2019YFSY0032)

Text Stance Detection Based on Topic Attention and Syntactic Information

KANG Shuming, ZHU Yan   

  1. School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
  • Published:2023-11-09
  • About author:KANG Shuming,born in 1998,postgraduate.His main research interests include stance detection and natural language processing.
    ZHU Yan,born in 1965,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include data mining,computational network analysis,and big data.
  • Supported by:
    Sichuan Science and Technology Project(2019YFSY0032).

摘要: 文本立场分析旨在从用户发表的文本中推测其对特定话题的看法,如支持、反对、中立等态度。传统的立场分析研究往往采用卷积神经网络或者长短时记忆网络等深度学习模型学习文本的基本语义信息,忽略了文本蕴含的句法结构信息。针对这一问题,文中设计实现了基于话题注意力和依存句法的文本立场检测模型——AT-BiLSTM-GAT,在BiLSTM提取的文本上下文信息基础上,采用GAT进一步学习文本语言学层次的依存句法信息。同时设计实现一种融合上下文语义信息的话题注意力机制,采用缩放点积注意力学习立场文本中与话题相关的重要内容,在公开数据集上的对比实验证明了AT-BiLSTM-GAT模型的高效性。最后,针对立场分析研究数据集存在规模较小的问题,设计实现了一种基于WordNet同义词库与WebVectors词嵌入模型的同义词替换数据增强方案WWDA,保证了同义词替换过程的词性正确性和语义相似性,通过实验证明其可以生成更多高质量样本,提升模型的检测性能。

关键词: 立场分析, 话题注意力, 依存句法, 图注意力神经网络, 数据增强

Abstract: Text stance detection aims to infer users’ opinions on specific topics,such as supportive,opposing,neutral and other attitudes,from their published texts.Traditional stance detection studies often use deep learning models such as convolutional neural networks or long and short-term memory networks to learn the basic semantic information of the text,ignoring the syntactic structure information embedded in the text.To address this problem,this paper designs and implements a text stance detection model--AT-BiLSTM-GAT based on topic attention and dependent syntax,and on the basis of the text context information extracted by BiLSTM,GAT is used to further learn dependent syntactic information at the text linguistic level.Meanwhile,a topic attention mechanism incorporating contextual semantic information is designed and implemented,and scaled dot product attention is employed to learn the topic-related important content in stance text,and comparative experiments on public datasets prove the efficiency of the designed and implemented AT-BiLSTM-GAT model.Finally,to address the problem of the small size of the stance detection research dataset,a synonym replacement data enhancement scheme based on WordNet synonym database and WebVectors word embedding model-WWDA,which ensures the lexical correctness and semantic similarity of the synonym replacement process,and experiment proves that it can generate more high-quality samples and improve the detection performance of the model.

Key words: Stance detection, Topic attention, Dependency syntax, Graph attention network, Data augmentation

中图分类号: 

  • TP391
[1]LI Y,SUN Y Q,JING W P.Summary of Text Stance Detection[J].Journal of Computer Research and Development,2021,58(11):2538-2557.
[2]LIU W,PENG X,LI C,et al.A Survey on Stance Detection[J].Journal of Chinese Information,2020,34(12):1-8.
[3]DU J,XU R,HE Y,et al.Stance classification with target-specific neural attention networks[C]//International Joint Confe-rences on Artificial Intelligence.2017.
[4]YUE T C,ZHANG S W,YANG L,et al.A stance detectionmethod based on two-stage attention mechanism[J].Journal of Guangxi Normal University(Natural Science Edition),2019,37(1):42-49.
[5]BAI J,LI F,JI D H.Attention-based BiLSTM-CNN ChineseWeibo Stance Detection Model [J].Computer Applications and Software,2018,35(3):266r274.
[6]SUN Q,WANG Z,LI S,et al.Stance detection via sentiment information and neural network model[J].Frontiers of Computer Science,2019,13(1):127-138.
[7]WANG Z,SUN Q,LI S,et al.Neural Stance Detection WithHierarchical Linguistic Representations[J/OL].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2020,28.https://ieeexplore.ieee.org/abstract/document/8949710.
[8]WU L,CHEN Y,SHEN K,et al.Graph neural networks fornatural language processing:A survey[J].arXiv:2106.06090,2021.
[9]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
[10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J/OL].Advances in Neural Information Processing Systems,2017,30.https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
[11]MOHAMMAD S,KIRITCHENKO S,SOBHANI P,et al.Semeval-2016 task 6:Detecting stance in tweets[C]//Proceedings of the 10th international workshop on semantic evaluation(SemEval-2016).2016:31-41.
[12]GLANDT K,KHANAL S,LI Y,et al.Stance detection in COVID-19 tweets[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:1596-1611.
[13]WEI J,ZOU K.EDA:Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Confe-rence on Natural Language Processing(EMNLP-IJCNLP).2019:6382-6388.
[14]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41.
[15]KUTUZOV A,FARES M,OEPEN S,et al.Word vectors,reuse,and replicability:Towards a community repository of large-text resources[C]//Proceedings of the 58th Conference on Si-mulation and Modelling.Linköping University Electronic Press,2017:271-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!