计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220200068-6.doi: 10.11896/jsjkx.220200068
樊卓优
FAN Zhuoyou
摘要: 概率布尔控制网络的转移矩阵的不确定性,使得其可观和可控性分析和状态估计更为困难。主要研究了概率布尔控制网络的可观性问题,并在此基础上给出了判断系统可观的条件,以及计算系统初始状态向量的方法。首先,根据系统的可达状态集,定义系统的可区分和不可区分状态,并给出d步可区分的概念以及其判断的充要条件。其次,根据概率布尔控制网络的输出和系统模型,得到系统的概率初始状态集合。接着,在此基础上给出概率布尔控制网络的强可观和弱可观的定义。同时,计算系统初始状态向量,并且给出判断系统是否可观的定理;最后,通过一个算例说明了所提方法的有效性。
中图分类号:
[1]KAUFFMAN S A.Metabolic stability and epigenesis in randomly constructed genetic nets[J].Journal of Theoretical Biology,1969,22(3):437-467. [2]CHENG D,QI H,ZHAO Y.An Introduction to Semi-Tensor Product of Matrices and Its Applications[M].World Scientific,2012. [3]CHENG D,QI H,LI Z.Analysis and Control of Boolean Networks[M].London:Springer London,2011. [4]CHENG D,QI H.A Linear Representation of Dynamics ofBoolean Networks[J].IEEE Transactions on Automatic Control,2010,55(10):2251-2258. [5]GUO Y,WANG P,GUI W,et al.Set stability and set stabilization of Boolean control networks based on invariant subsets[J].Automatica,2015,61:106-112. [6]LI R,YANG M,CHU T.State Feedback Stabilization for Boolean Control Networks[J].IEEE Transactions on Automatic Control,2013,58(7):1853-1857. [7]LI H,WANG Y.Output feedback stabilization control designfor Boolean control networks[J].Automatica,2013,49(12):3641-3645. [8]ZHANG K,ZHANG L.Observability of Boolean control net-works:A unified approach based on the theories of finite automa-ta[J].IEEE Transactions on Automatic Control,2016,61(9):2733-2738. [9]LASCHOV D,MARGALIOT M,EVEN G.Observability ofBoolean networks:A graph-theoretic approach[J].Automatica,2013,49(8):2351-2362. [10]LASCHOV D,MARGALIOT M.Controllability of Booleancontrol networks via the Perron-Frobenius theory[J].Automatica,2012,48(6):1218-1223. [11]CHENG D,ZHAO Y.Identification of Boolean control networks[J].Automatica,2011,47(4):702-710. [12]LI F,LU X,YU Z.Optimal control algorithms for switchedBoolean network[J].Journal of the Franklin Institute,2014,351(6):3490-3501. [13]FORNASINI E,VALCHER M E.Optimal control of Booleancontrol networks[J].IEEE Transactions on Automatic Control,2014,59:1258-1270. [14]LIU Y,LI B,LOU J.Disturbance Decoupling of Singular BooleanControl Networks[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2016,13(6):1194-1200. [15]CHENG D.Disturbance Decoupling of Boolean Control Net-works[J].IEEE Transactions on Automatic Control,2011,56(1):2-10. [16]SHMULEVICH I,DOUGHERTY E R,ZHANG W.FromBoolean to probabilistic Boolean networks as models of genetic regulatory networks[C]//Proceedings of the IEEE.2002. [17]SHMULEVICH I,DOUGHERTY E R,KIM S,et al.Probabilistic Boolean networks:a rule-based uncertainty model for gene regulatory networks[J].Bioinformatics,2002,18(2):261-274. [18]LI Z,XIAO H.Weak reachability of probabilistic boolean control networks[C]//2015 International Conference on Advanced Mechatronic Systems(ICAMechS).2015:56-60. [19]ZHOU R,GUO Y,GUI W.Set reachability and observability of probabilistic Boolean networks[J].Automatica,2019,106:230-241. [20]ZHANG Q,FENG J,WANG B.Stability analysis of probabilistic Boolean networks with switching topology[J].Nonlinear Analysis:Hybrid Systems,2021,42:101076. [21]GUO Y,ZHOU R,WU Y,et al.Stability and Set Stability inDistribution of Probabilistic Boolean Networks[J].IEEE Tran-sactions on Automatic Control,2018:1-1. [22]ZHAO Y,CHENG D.On controllability and stabilizability ofprobabilistic Boolean control networks[J].Science China Information Sciences,2014,57(1):1-14. [23]LI R,YANG M,CHU T.State feedback stabilization for probabilistic Boolean networks[J].Automatica,2014,50(4):1272-1278. [24]LIU Q.Optimal finite horizon control in gene regulatory net-works[J].The European Physical Journal B,2013,86(6):245. [25]PAL R,DATTA A,DOUGHERTY E R.Optimal infinite-horizon control for probabilistic Boolean networks[J].IEEE Transactions on Signal Processing,2006,54(6):2375-23870. [26]FORNASINI E,VALCHER M E.Observability and Recon-structibility of Probabilistic Boolean Networks[J].IEEE Control Systems Letters,2020,4(2):319-324. [27]LI F,SUN J.Controllability of probabilistic Boolean control networks[J].Automatica,2011,47(12):2765-2771. [28]LIU Y,CHEN H,LU J,et al.Controllability of probabilisticBoolean control networks based on transition probability matrices[J].Automatica,2015,52:340-345. [29]GOU Z L,XU Y,WANG J H.Set Controllability of Probabilistic Boolean Control Networks[J].Control Theory and Applications,2021(5):689-696. [30]ZHAO Y,CHENG D.On controllability and stabilizability of probabilistic Boolean control networks[J].Science China Information Sciences,2014,57(1):1-14. [31]WANG L,LIU Y,WU Z G,et al.Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks[J/OL].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019:1-8.DOI:10.1109/TSMC.2019.2898880. [32]WANG B,FENG J E.Recent Development on Observability and Detectability of Boolean Control Networks[J].Control and Decision,2020,35(9):2049-2058. [33]JING Z,ZHENBIN L.Observability of probabilistic Booleannetworks[C]//2015 34th Chinese Control Conference(CCC).Hangzhou,China:IEEE,2015:183-186. |
|