计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220200068-6.doi: 10.11896/jsjkx.220200068

• 人工智能 • 上一篇    下一篇

概率布尔控制网络的可观性分析

樊卓优   

  1. 河南理工大学电气工程与自动化学院 河南 焦作 454000
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 樊卓优(fzhuoyou@qq.com)

Observability of Probabilistic Boolean Control Networks

FAN Zhuoyou   

  1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo,Henan 454000,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:FAN Zhuoyou,born in 1997,postgra-duate.Her main research interests include Boolean control networks and information processing.

摘要: 概率布尔控制网络的转移矩阵的不确定性,使得其可观和可控性分析和状态估计更为困难。主要研究了概率布尔控制网络的可观性问题,并在此基础上给出了判断系统可观的条件,以及计算系统初始状态向量的方法。首先,根据系统的可达状态集,定义系统的可区分和不可区分状态,并给出d步可区分的概念以及其判断的充要条件。其次,根据概率布尔控制网络的输出和系统模型,得到系统的概率初始状态集合。接着,在此基础上给出概率布尔控制网络的强可观和弱可观的定义。同时,计算系统初始状态向量,并且给出判断系统是否可观的定理;最后,通过一个算例说明了所提方法的有效性。

关键词: 概率布尔控制网络, 状态可达集, 可观性

Abstract: The uncertainty of the transfer matrix brings difficulties to the observability and controllability analysis for probabilistic Boolean control networks(PBCNs).This paper mainly studies the observability of PBCNs,and the conditions of observability are also developed for PBCNs.On this basis,the method for calculating the initial state vector of the system is given.Firstly,according to the reachable state set of PBCNs,the distinguishable and indistinguishable states of the system are defined,and the concept of $d$-step distinguishability and the necessary and sufficient conditions for its judgment are given.Secondly,based on the output and state model of PBCNs,the probabilistic initial state set of the system is also obtained.Then,the definition of strong observability and weak observability of PBCNs are given.Meanwhile,the methods of calculating the initial state vector and determining whether a given PBCN is observable are obtained.Finally,an example is given to illustrate the effectiveness of the proposed methods.

Key words: Probabilistic Boolean control networks, Reachable state set, Observability

中图分类号: 

  • TP181
[1]KAUFFMAN S A.Metabolic stability and epigenesis in randomly constructed genetic nets[J].Journal of Theoretical Biology,1969,22(3):437-467.
[2]CHENG D,QI H,ZHAO Y.An Introduction to Semi-Tensor Product of Matrices and Its Applications[M].World Scientific,2012.
[3]CHENG D,QI H,LI Z.Analysis and Control of Boolean Networks[M].London:Springer London,2011.
[4]CHENG D,QI H.A Linear Representation of Dynamics ofBoolean Networks[J].IEEE Transactions on Automatic Control,2010,55(10):2251-2258.
[5]GUO Y,WANG P,GUI W,et al.Set stability and set stabilization of Boolean control networks based on invariant subsets[J].Automatica,2015,61:106-112.
[6]LI R,YANG M,CHU T.State Feedback Stabilization for Boolean Control Networks[J].IEEE Transactions on Automatic Control,2013,58(7):1853-1857.
[7]LI H,WANG Y.Output feedback stabilization control designfor Boolean control networks[J].Automatica,2013,49(12):3641-3645.
[8]ZHANG K,ZHANG L.Observability of Boolean control net-works:A unified approach based on the theories of finite automa-ta[J].IEEE Transactions on Automatic Control,2016,61(9):2733-2738.
[9]LASCHOV D,MARGALIOT M,EVEN G.Observability ofBoolean networks:A graph-theoretic approach[J].Automatica,2013,49(8):2351-2362.
[10]LASCHOV D,MARGALIOT M.Controllability of Booleancontrol networks via the Perron-Frobenius theory[J].Automatica,2012,48(6):1218-1223.
[11]CHENG D,ZHAO Y.Identification of Boolean control networks[J].Automatica,2011,47(4):702-710.
[12]LI F,LU X,YU Z.Optimal control algorithms for switchedBoolean network[J].Journal of the Franklin Institute,2014,351(6):3490-3501.
[13]FORNASINI E,VALCHER M E.Optimal control of Booleancontrol networks[J].IEEE Transactions on Automatic Control,2014,59:1258-1270.
[14]LIU Y,LI B,LOU J.Disturbance Decoupling of Singular BooleanControl Networks[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2016,13(6):1194-1200.
[15]CHENG D.Disturbance Decoupling of Boolean Control Net-works[J].IEEE Transactions on Automatic Control,2011,56(1):2-10.
[16]SHMULEVICH I,DOUGHERTY E R,ZHANG W.FromBoolean to probabilistic Boolean networks as models of genetic regulatory networks[C]//Proceedings of the IEEE.2002.
[17]SHMULEVICH I,DOUGHERTY E R,KIM S,et al.Probabilistic Boolean networks:a rule-based uncertainty model for gene regulatory networks[J].Bioinformatics,2002,18(2):261-274.
[18]LI Z,XIAO H.Weak reachability of probabilistic boolean control networks[C]//2015 International Conference on Advanced Mechatronic Systems(ICAMechS).2015:56-60.
[19]ZHOU R,GUO Y,GUI W.Set reachability and observability of probabilistic Boolean networks[J].Automatica,2019,106:230-241.
[20]ZHANG Q,FENG J,WANG B.Stability analysis of probabilistic Boolean networks with switching topology[J].Nonlinear Analysis:Hybrid Systems,2021,42:101076.
[21]GUO Y,ZHOU R,WU Y,et al.Stability and Set Stability inDistribution of Probabilistic Boolean Networks[J].IEEE Tran-sactions on Automatic Control,2018:1-1.
[22]ZHAO Y,CHENG D.On controllability and stabilizability ofprobabilistic Boolean control networks[J].Science China Information Sciences,2014,57(1):1-14.
[23]LI R,YANG M,CHU T.State feedback stabilization for probabilistic Boolean networks[J].Automatica,2014,50(4):1272-1278.
[24]LIU Q.Optimal finite horizon control in gene regulatory net-works[J].The European Physical Journal B,2013,86(6):245.
[25]PAL R,DATTA A,DOUGHERTY E R.Optimal infinite-horizon control for probabilistic Boolean networks[J].IEEE Transactions on Signal Processing,2006,54(6):2375-23870.
[26]FORNASINI E,VALCHER M E.Observability and Recon-structibility of Probabilistic Boolean Networks[J].IEEE Control Systems Letters,2020,4(2):319-324.
[27]LI F,SUN J.Controllability of probabilistic Boolean control networks[J].Automatica,2011,47(12):2765-2771.
[28]LIU Y,CHEN H,LU J,et al.Controllability of probabilisticBoolean control networks based on transition probability matrices[J].Automatica,2015,52:340-345.
[29]GOU Z L,XU Y,WANG J H.Set Controllability of Probabilistic Boolean Control Networks[J].Control Theory and Applications,2021(5):689-696.
[30]ZHAO Y,CHENG D.On controllability and stabilizability of probabilistic Boolean control networks[J].Science China Information Sciences,2014,57(1):1-14.
[31]WANG L,LIU Y,WU Z G,et al.Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks[J/OL].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019:1-8.DOI:10.1109/TSMC.2019.2898880.
[32]WANG B,FENG J E.Recent Development on Observability and Detectability of Boolean Control Networks[J].Control and Decision,2020,35(9):2049-2058.
[33]JING Z,ZHENBIN L.Observability of probabilistic Booleannetworks[C]//2015 34th Chinese Control Conference(CCC).Hangzhou,China:IEEE,2015:183-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!