计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 191-197.doi: 10.11896/jsjkx.240100063
程燕
CHENG Yan
摘要: 基于深度学习的人脸真伪检测是一个典型的二分类问题,模型训练结果的精度不仅受到训练数据质和量的影响,还与训练策略、网络架构设计等有关。以光流法为基础,提出了一种基于关键帧与时空特征融合的人脸伪造检测方法。首先,采用加权光流能量阈值分析法筛选出视频中能量较大的关键帧,将关键帧的光流和LBP纹理特征进行融合,构成具有时间和空间特性的融合特征图,经过增强处理后输入CNN模型进行学习。在FaceForensics++和Celeb-df数据集上的测试表明,所提算法的检测率较传统算法均有明显提升。跨库实验中,所提算法采用Efficientnet-V2结构在FaceForensics++数据集上表现出最优的跨库检测性能,准确率达到90.1%,XceptionNet结构的整体性能优于其他方法,准确率均达到80%以上,具有优越的泛化性能。
中图分类号:
[1] LI X R,JI S L,WU C M,et al.Survey on Deepfakes and Detection Techniques[J].Journal of Software,2021,32(2):496-518. [2] ZHANG Y X,LI G,CAO Y,et al.A Method for Detecting Human-face-tampered Videos based on Interframe Difference[J].Journal of Cyber Security,2020(2):49-72. [3] HAN B,HAN X G,ZHANG H,et al.Fighting Fake News:TwoStream Network for Deepfake Detection via Learnable SRM[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(3):320-331. [4] QI H,GUO Q,XU J F,et al.DeepRhythm:Exposing DeepFakeswith Attentional Visual Heartbeat Rhythms[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:1318-1327. [5] JUNG T,KIM S,KIM K.DeepVision:Deepfakes DetectionUsing Human Eye Blinking Pattern[J].IEEE Access,2020,8:83144-83154. [6] AGARWAL S,FARID H,GU Y M,et al.Protecting WorldLeaders Against Deep Fakes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019:38-45. [7] YANG X,LI Y Z,LYU S.Exposing Deep Fakes using Inconsistent Head Poses[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.2019:8261-8265. [8] ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.FaceFo-rensics++:Learning to Detect Manipulated Facial Images[C]//Proceedings of IEEE International Conference on Computer Vision.2019:1-11. [9] AMERINI I,GALTERI L,CALDELLI R,et al.Deepfake Video Detection through Optical Flow based CNN[C]//Proceedings of International Conference on Computer Vision Workshop.2019:1205-1207. [10] AKASH C,AISHWARYA R,SANIAT S,et al.Leveraging Edges and Optical Flow on Faces for Deepfake Detection[C]//Proceedings of IEEE/IAPR International Joint Conference on Biometrics.2020. [11] CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition.2017:1800-1807. [12] SABIR E,CHENG J X,JAISWAL A,et al.Recurrent Convolutional Strategies for Face Manipulation Detection in Videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:80-87. [13] GUERA D,DELP E J.DeepfakeVideo Detection using Recur-rent Neural Network[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance.2018:1-6. [14] AFCHAR D,NOZICK V,YAMAGISHI J,et al.Mesonet:ACompact Facial Video Forgery Detection Network[C]//Procee-dings of IEEE International Workshop on Information Forensics and Security.2018:1-7. [15] SZEGEDY C,VANHOUCKE V,LOFFE S,et al.RethinkingtheInception Architecture for Computer Vision[C]//Procee-dings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [16] NGUYEN H H,YAMAGISHI J,ECHIZEN I.Capsule-foren-sics:Using Capsule Networks to Detect Forged Images and Vi-deos[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.2019:2307-2311. [17] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]//Proceedings of the 3rd International Conference on Learning Representations.2015. [18] ARASH H,NIMAJAFARI N,HASAN D,et al.A Novel Blockchain-based Deepfake Detection Method using Federated and Deep Learning Models[J].Cognitive Computation,2024,16(3):1073-1091. [19] YU P P,FEI J W,XIA Z H,et al.Improving Generalization by Commonality Learning in Face Forgery Detection[J].IEEE Transactions on Information Forensics and Security,2022(17):547-558. [20] XING H,LI M.Deepfake Video Detection based on 3D Convolutional Neural Networks[J].Computer Science,2021,48(7):86-92. [21] WANG T Y,CHENG H,CHOW K P,et al.Deep Convolutional Pooling Transformer for Deepfake Detection[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2023,19(6):1-20. [22] HSU C C,ZHUANG Y X,LEE C Y.Deep Fake Image Detectionbased on Pairwise Learning[J].Applied Sciences,2020,10(1):370. [23] DANG H,LIU F,STEHOUWER J,et al.On the Detection of Digital Face Manipulation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Re-cognition.2020:5780-5789. [24] RAHMOUNI N,NOZICK V,YAMAGISHI J,et al.Distinguishing Computer Graphics from Natural Images using Convolution Neural Networks[C]//Proceedings of the IEEE Workshop on Information Forensics and Security.2017:1-6. [25] ZHU S H,HU J J,SHI Z.LocalAbnormal Behavior Detection based on Optical Flow and Spatio-temporal Gradient[J].Multimedia Tools and Applications,2016,75(15):9445-9459. [26] FU B,LI W H,CHEN B,et al.Abnormal Behavior Detectionbased on Weighted Energy of Optical Flow[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(6):1644-1649. [27] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint Face Detection and Alignment using Multitask Cascaded Convolutional Networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [28] BATTITI R,AMALDI E,KOCH C.Computing Optical Flow Across Multiple Scales:An adaptive coarse-to-fine strategy[J].International Journal of Computer Vision,1991,6(2):133-145. [29] LI Y Z,YANG X,SUN P,et al.Celeb-df:ALarge-scale Chal-lenging Dataset for Deepfake Forensics[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2020:3204-3213. [30] LI Y Z,LYU S W.Exposing Deepfake Videos by Detecting Face Warping Artifacts[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:46-52. [31] SANDLER M,HOWARD A,ZHU M L,et al.Mobilenetv2:Inverted Residuals and Linear Bottlenecks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [32] DENG L W,SUO H F,LI D J.Deepfake Video Detection based on EfficientNet-V2 Network[J].Computational Intelligence and Neuroscience,2022:1-13.https://doi.org/10.1155/2022/3441549. [33] COCCOMINI D A,MESSINA N,GENNARO C,et al.Combining EfficientNet and Vision Transformers for Video Deepfake Detection[C]//Proceedings of the 21st International Conference on Image Analysis and Processing.2022:219-229. [34] WANG Y H,DANTCHEVA A.AVideo is Worth More than 1000 Lies.Comparing 3DCNN Approaches for Detecting Deepfake[C]//Proceedings of the 15th IEEE International Confe-rence on Automatic Face and Gesture Recognition.2020:515-519. |
|