计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 307-320.doi: 10.11896/jsjkx.231200078

• 信息安全 • 上一篇    下一篇

区块链分片技术研究综述

谭朋柳, 徐滕, 涂若欣   

  1. 南昌航空大学软件学院 南昌 330063
  • 收稿日期:2023-12-12 修回日期:2024-05-09 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 谭朋柳(pltan@nchu.edu.cn)
  • 基金资助:
    国家自然科学基金(61961029);江西省科技厅重点研发计划(20171ACE50025)

Review of Research on Blockchain Sharding Techniques

TAN Pengliu, XU Teng, TU Ruoxin   

  1. School of Software,Nanchang Hangkong University,Nanchang 330063,China
  • Received:2023-12-12 Revised:2024-05-09 Online:2024-11-15 Published:2024-11-06
  • About author:TAN Pengliu,born in 1975,Ph.D,associate professor,is a member of CCF(No.19252M).His main research interests include blockchain,cyber-physical system,intelligent medical care,intelligent transportation system,etc.
  • Supported by:
    National Natural Science Foundation of China(61961029) and Key Research Plan of Science and Technology Department of Jiangxi Province(20171ACE50025).

摘要: 区块链技术以去中心化、防篡改等功能为特色,具有广泛的应用前景。然而,区块链系统难以支撑大规模海量的分布式数据管理和交易,所以区块链的性能和可扩展性问题成为重要的研究方向。目前,研究人员分别从修改链上的数据结构和共识算法,到添加链下操作技术,提出了一些解决方案,以提高区块链的性能和可扩展性。而其中,随着网络规模的增加,实现水平扩展性的最实用的方法就是分片技术。作为一种链上扩容方式,分片技术是一种将整个区块链网络划分成多个片段的方法,便于同时处理多个交易或合约。每个分片都可以独立运行,拥有自己的交易历史和状态,在不牺牲中心化程度的同时提高了区块链的性能和可扩展性。以往的大量区块链分片技术研究着重介绍了分片中的交易共识,而忽略了分片策略机制与分片架构。为此,首先对现有的分片区块链进行系统分析,将分片区块链的设计过程分为架构设置、节点选择、节点分配、交易分发、交易处理和分片重构等部分,并分析了分片区块链的设计过程的各部分的功能、属性;其次,对分片架构进行了分类和总结,重点研究了各种分片策略与机制,分析了它们的优缺点;之后,对主流的分片区块链系统做了比较,并分析了它们的可扩展性和可靠性,包括系统吞吐量、时延、通信开销、节点随机性、分片安全性和跨片智能合约等;最后,提出未来可能的研究方向。

关键词: 区块链, 分布式账本技术, 可扩展性, 分片技术, 并行处理

Abstract: Blockchain technology is characterized by decentralization and tamper resistance,and has a wide range of application prospects.However,it is difficult for blockchain systems to support large-scale distributed data management and transactions,so the performance and scalability of blockchain have become important research directions.At present,researchers have proposed some solutions to improve the performance and scalability of blockchain by modifying the data structure and consensus algorithm on the chain,and adding off-chain operation technology.Among them,the most practical method to achieve horizontal scalability with the increase of network scale is sharding technology.As an on-chain scaling method,sharding technology is a method to divide the entire blockchain network into multiple segments to facilitate the simultaneous processing of multiple transactions or contracts.Each shard can operate independently,with its own transaction history and state,improving the performance and sca-lability of the blockchain without sacrificing centralization.Previous studies on blockchain sharding technology have focused on introducing transaction consensus in sharding,while ignoring the sharding strategy mechanism and sharding architecture.Therefore,this paper first systematically analyzes the existing sharding blockchains,divides the design process of sharding blockchains into several parts:architecture setting,node selection,node allocation,transaction distribution,transaction processing,and sharding reconstruction,and analyzes the functions and properties of each part of the design process of sharding blockchains.Secondly,the sharding architecture is classified and summarized.This paper focuses on various sharding strategies and mechanisms,analyzes their advantages and disadvantages,compares mainstream sharding blockchain systems,and analyzes their scalability and reliability,including system throughput,delay,communication overhead,node randomness,sharding security,and cross-shard smart contracts.Finally,future research directions are proposed.

Key words: Blockchain, Distributed ledger technology, Scalability, Sharding technology, Parallel processing

中图分类号: 

  • TP301
[1] NASIR M H,ARSHAD J,KHAN M M,et al.Scalable blockchains-A systematic review[J].Future Generation Computer Systems,2022,126:136-162.
[2] HAN R,YU J,LIN H,et al.On the Security and Performance of Blockchain Sharding[J].Cryptology ePrint Archive,2021,2021:1-15.
[3] LUU L,NARAYANAN V,ZHENG C,et al.A Secure Sharding Protocol For Open Blockchains[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:17-30.
[4] KOKORIS-KOGIAS E,JOVANOVIC P,GASSER L,et al.OmniLedger:A Secure,Scale-Out,Decentralized Ledger via Sharding[C]//2018 IEEE Symposium on Security and Privacy(SP).2018:583-598.
[5] ZAMANI M,MOVAHEDI M,RAYKOVA M.RapidChain:Scaling Blockchain via Full Sharding[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.New York,NY,USA:Association for Computing Machinery,2018:931-948.
[6] LIU Y,LIU J,VAZ SALLES M A,et al.Building blocks of sharding blockchain systems:Concepts,approaches,and open problems[J].Computer Science Review,2022,46:100513.
[7] LI Y,WANG J,ZHANG H.A survey of state-of-the-art sharding blockchains:Models,components,and attack surfaces[J].Journal of Network and Computer Applications,2023,217(8):1.1-1.19.
[8] HASHIM F,SHUAIB K,ZAKI N.Sharding for Scalable Block-chain Networks[J].SN Computer Science,2022,4(1):2.
[9] XU Y,SHAO J,SLAATS T,et al.MWPoW+:A Strong Consensus Protocol for Intra-Shard Consensus in Blockchain Sharding[J].ACM Transactions on Internet Technology,2023,23(2):34:1-34:27.
[10] CHEN R,WANG L,PENG C,et al.An Effective Sharding Consensus Algorithm for Blockchain Systems[J].Electronics,2022,11(16):2597.
[11] WANG K Y,JIANG X,JIA L P,et.al.Throughput Model of Starlike Sharding Structure for Blockchains and Its Applications[J].Journal of Software,2023,34(9):4294-4309.
[12] AL-BASSAM M,SONNINO A,BANO S,et al.Chainspace:A Sharded Smart Contracts Platform[J].arXiv:1708.03778,2017.
[13] MANUSKIN A,MIRKIN M,EYAL I.Ostraka:Secure Block-chain Scaling by Node Sharding[C]//2020 IEEE European Symposium on Security and Privacy Workshops(EuroS&PW).IEEE.2020:397-406.
[14] CAI Z,LIANG J,CHEN W,et al.Benzene:Scaling Blockchain With Cooperation-Based Sharding[J].IEEE Transactions on Parallel and Distributed Systems,2022,34(2):639-654.
[15] BEZ M,FORNARI G,VARDANEGA T.The scalability challenge of ethereum:An initial quantitative analysis[C]//2019 IEEE International Conference on Service-Oriented System Engineering(SOSE).2019:167-176.
[16] BURDGES J,CEVALLOS A,CZABAN P,et al.Overview ofPolkadot and its Design Considerations[J].arXiv:2005.13456,2020.
[17] CHEN H,WANG Y.SSChain:A full sharding protocol for public blockchain without data migration overhead[J].Pervasive and Mobile Computing,2019,59:101055.
[18] XIAO F,LAI T,GUAN Y,et al.Application of BlockchainSharding Technology in Chinese Medicine Traceability System[J].Computers,Materials & Continua,2023,76(1):35-48.
[19] SUN E Y,LIANG J M,LIU J B.Blockchain Sharding Optimization Scheme Based on Virtualization[C]//Intelligent Information Processing Industrialisation Branch,China High-Tech Industrialisation Research Association.2022.
[20] WANG J,WANG S,ZHANG Q,et al.A two-layer consortium blockchain with transaction privacy protection based on sharding technology[J].Journal of Information Security and Applications,2023,74:103452.
[21] AMIRI M J,AGRAWAL D,EL ABBADI A.SharPer:ShardingPermissioned Blockchains Over Network Clusters[C]//Procee-dings of the 2021 International Conference on Management of Data.2021:76-88.
[22] MAO C,GOLAB W.Sharding Techniques in the Era of Blockchain[C]//2021 40th International Symposium on Reliable Distributed Systems(SRDS).2021:343-344.
[23] CHA K J.Research on blockchain sharding strategy and its application in traditional Chinese medicine data query[D].Nanjing:Nanjing University of Chinese Medicine,2022.
[24] ZHANG P,GUO W,LIU Z,et al.Optimized Blockchain Shar-ding Model Based on Node Trust and Allocation[J].IEEE Transactions on Network and Service Management,2023,20(3):2804-2816.
[25] ZHANG M,LI J,CHEN Z,et al.CycLedger:A Scalable and Secure Parallel Protocol for Distributed Ledger via Sharding[C]//2020 IEEE International Parallel and Distributed Processing Symposium(IPDPS).IEEE,2020:358-367.
[26] RANA R,KANNAN S,TSE D,et al.Free2Shard:Adversary-resistant Distributed Resource Allocation for Blockchains[J].Proceedings of the ACM on Measurement and Analysis of Computing Systems,2022,6(1):11:1-11:38.
[27] YUN J,GOH Y,CHUNG J M.Trust-based shard distribution scheme for fault-tolerant shard blockchain networks[J].IEEE Access,2019,7:135164-135175.
[28] TIAN J,XU H,TIAN J.SLChain:A secure and low-storagepressure sharding blockchain[J].Concurrency and Computation:Practice and Experience,2024,36(3):e7918.1-e7918.15.
[29] LADOSZ P,WENG L,KIM M,et al.Exploration in deep reinforcement learning:A survey[J].Information Fusion,2022,85:1-22.
[30] ZHANG J,HONG Z,QIU X,et al.SkyChain:A Deep Reinforcement Learning-Empowered Dynamic Blockchain Sharding System[C]//Proceedings of the 49th International Conference on Parallel Processing.New York,NY,USA:Association for Computing Machinery,2020:1-11.
[31] LIN Y,GAO Z,DU H,et al.DRL-based adaptive sharding for blockchain-based federated learning[J].IEEE Transactions on Communications,2023,41(11):3504-3516.
[32] YUN J,GOH Y,CHUNG J M.DQN-Based OptimizationFramework for Secure Sharded Blockchain Systems[J].IEEE Internet of Things Journal,2021,8(2):708-722.
[33] LIU C,WAN J,LI L,et al.Throughput Optimization for Blockchain System with Dynamic Sharding[J].Electronics,2023,12(24):4915.
[34] WANG J D,LI Q.Improved practical Byzantine fault tolerance consensus algorithm based on Raft algorithm[J].Journal of Computer Applications,2023,43(1):122-129.
[35] BAI S Z,CHEN M J.Research on Layering and Sharding ofBlockchain for Industrial Internet[J].Computer Engineering,2023,49(3):58-66,79.
[36] LI C,HUANG H,ZHAO Y,et al.Achieving Scalability andLoad Balance across Blockchain Shards for State Sharding[C]//2022 41st International Symposium on Reliable Distributed Systems(SRDS).IEEE,2022:284-294.
[37] LI J,NING Y.Blockchain Transaction Sharding Algorithmbased on Account-Weighted Graph[J].IEEE Access,2024,12:24672-24684.
[38] CAI X,GENG S,ZHANG J,et al.A Sharding Scheme-BasedMany-Objective Optimization Algorithm for Enhancing Security in Blockchain-Enabled Industrial Internet of Things[J].IEEE Transactions on Industrial Informatics,2021,17(11):7650-7658.
[39] HONG Z,GUO S,LI P.Scaling Blockchain via Layered Sharding[J].IEEE Journal on Selected Areas in Communications,2022,40(12):3575-3588.
[40] HUANG H,PENG X,ZHAN J,et al.BrokerChain:A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications.2022:1968-1977.
[41] SET S K,PARK G S.Service-Aware Dynamic Sharding Ap-proach for Scalable Blockchain[J].IEEE Transactions on Ser-vices Computing,2023,16(4):2954-2969.
[42] MU K,WEI X.EfShard:Toward Efficient State Sharding Blockchain via Flexible and Timely State Allocation[J].IEEE Transactions on Network and Service Management,2023,20(3):2817-2829.
[43] ZHANG Y,PAN S,YU J.TxAllo:Dynamic Transaction Allocation in Sharded Blockchain Systems[C]//2023 IEEE 39th International Conference on Data Engineering(ICDE).2023:721-733.
[44] MIZRAHI A,ROTTENSTREICH O.State Sharding withSpace-aware Representations[C]//2020 IEEE International Conference on Blockchain and Cryptocurrency(ICBC).2020:1-9.
[45] TENNAKOON D,GRAMOLI V.Dynamic Blockchain Sharding[C]//5th International Symposium on Foundations and Applications of Blockchain 2022(FAB 2022).Schloss Dagstuhl-Leibniz-Zentrum für Informatik,2022.
[46] ZHENG P,XU Q,ZHENG Z,et al.Meepo:Sharded Consortium Blockchain[C]//2021 IEEE 37th International Conference on Data Engineering(ICDE).2021:1847-1852.
[47] LIU Y,LIU J,LI D,et al.FleetChain:A Secure Scalable and Responsive Blockchain Achieving Optimal Sharding[C]//QIU M.Algorithms and Architectures for Parallel Processing.Cham:Springer International Publishing,2020:409-425.
[48] FATHI F,BAGHANI M,BAYAT M.Light-PerIChain:Using lightweight scalable blockchain based on node performance and improved consensus algorithm in IoT systems[J].Computer Communications,2024,213:246-259.
[49] WANG Y,WANG W,ZENG Y,et al.Grading Shard:A newsharding protocol to improve blockchain throughput[J].Peer-to-Peer Networking and Applications,2023,16(3):1327-1339.
[50] LI M,WANG W,ZHANG J.LB-Chain:Load-Balanced andLow-Latency Blockchain Sharding via Account Migration[J].IEEE Transactions on Parallel & Distributed Systems,2023,34(10):2797-2810.
[51] XU J,MING Y,WU Z,et al.X-Shard:Optimistic Cross-Shard Transaction Processing for Sharding-Based Blockchains[J].IEEE Transactions on Parallel & Distributed Systems,2024,35(4):548-559.
[52] JIA L,LIU Y,WANG K,et al.Estuary:A Low Cross-Shard Blockchain Sharding Protocol Based on State Splitting[J].IEEE Transactions on Parallel & Distributed Systems,2024,35(3):405-420.
[53] WANG Y,LI J,LIU W,et al.Efficient Concurrent Execution of Smart Contracts in Blockchain Sharding[J].Security and Communication Networks,2021,2021:e6688168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!