计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000172-6.doi: 10.11896/jsjkx.231000172

• 网络&通信 • 上一篇    下一篇

自适应指纹子空间匹配WiFi定位算法

陈立久1, 王珂2, 李鹏1, 张正鹏1, 邓甘霖1, 张治胜1   

  1. 1 湘潭大学自动化与电子信息学院 湖南 湘潭 411100
    2 北京宇航系统工程研究所 北京 100010
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李鹏(pengli@xtu.edu.cn)
  • 作者简介:(1208632057@qq.com)
  • 基金资助:
    国家自然科学基金(61773330);国家重点研发计划(2020YFA0713501);湖南省自然科学基金(2021JJ50126);湖南省教育厅重点项目(21A0083);空间可信计算与电子信息技术实验室开放基金课题(OBCandETL-2022-04)

Adaptive Fingerprint Subspace Matching WiFi Location Algorithm

CHEN Lijiu1, WANG Ke2, LI Peng1, ZHANG Zhengpeng1, DENG Ganlin1, ZHANG Zhisheng1   

  1. 1 College of Automation and Electronic Information,Xiangtan University,Xiangtan,Hunan 411100,China
    2 Beijing Aerospace Systems Engineering Research Institute,Beijing 100010,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:CHEN Lijiu,born in 1997,postgra-duate,is a member of CCF(No.P1232G).His main research interest is indoor navigation status.
    LI Peng,born in 1978,postdoctoral,professor,Ph.D supervisor.His main research interests include indoor and outdoor navigation positioning,multi-agent collaborative control.
  • Supported by:
    National Natural Science Foundation of China(61773330),National Key Research and Development Program of China(2020YFA0713501),Natural Science Foundation of Hunan Provincial,China(2021JJ50126),Research Foundation of Education Bureau of Hunan Province,China(21A0083) and Open Fund Project of Space Trusted Computing and Electronic Information Technology Laboratory(OBCandETL-2022-04).

摘要: 传统的无线保真(WiFi)指纹匹配算法中,由于信号波动而导致的偏远邻近点与环境中物体对接入点(AP)信号遮挡等因素都会严重影响定位精度。针对这一问题,本文提出了一种自适应指纹子空间匹配定位算法。根据不同AP的组合将指纹库和测试指纹划分子空间,在每个子空间中利用欧氏距离之间的差值设置性能最优的临界值,筛选出最邻近的K个参考点;采用加权K近邻法进行粗定位,排除来自偏远邻近点带来的误差;最后整合各个子空间粗位置的估计值,采用平均滤波进行精确定位。实验结果表明,与传统的WiFi指纹匹配算法相比,所提算法有效减少了偏远邻近点和AP遮挡对定位精度的影响,增强了AP对不同位置的约束性,提高了WiFi定位系统的精度和鲁棒性。

关键词: 信号强度, 子空间, 临界值, 自适应, 指纹匹配

Abstract: In traditional wireless fidelity(WiFi)fingerprint matching algorithms,factors such as remote proximity points caused by signal fluctuation and the occlusion of access point(AP)signals by objects in the environment will seriously affect the positioning accuracy.To solve this problem,this paper proposes an adaptive fingerprint subspace matching positioning algorithm.According to the combination of different APs,the fingerprint database and the test fingerprint are divided into subspaces.In each subspace,the difference between Euclidean distances is used to set the optimal critical value of performance,and the nearest K reference points are selected.The weighted K-nearest neighbor method is used for coarse positioning to eliminate the error caused by remote neighboring points.Finally,the estimated value of coarse position in each subspace is integrated,and the average filter is used for precise positioning.Experimental results show that,compared with the traditional WiFi fingerprint matching algorithm,the proposed algorithm effectively reduces the impact of remote proximity points and AP occlusion on the positioning accuracy,enhances the constraint of AP on different positions,and improves the accuracy and robustness of the WiFi positioning system.

Key words: Signal intensity, Subspace, Critical value, Self-adaption, Fingerprint matching

中图分类号: 

  • TN92
[1]LI Z,LIU C,GAO J,et al.An improved WiFi/PDR integrated system using an adaptive and robust filter for indoor localization[J].ISPRS International Journal of Geo-Information,2016,5(12):224.
[2]LIU F,LIU J,YIN Y,et al.Survey on WiFi-based indoor po-sitioning techniques[J].IET Communications,2020,14(9):1372-1383.
[3]KUNG H Y,CHAISIT S,PHUONG N T M.Optimization of an RFID location identification scheme based on the neural network[J].International Journal of Communication Systems,2015,28(4):625-644.
[4]MAO Y Y,LV D.Optimization of Fingerprint Localization Algorithm Based on AP-SVM Hybrid Classification [J].Transducer and Microsystem Technologies,2022,41(7):126-129,138.
[5]QI J,LIUG P.A robust high-accuracy ultrasound indoor positioning system based on a wireless sensor network[J].Sensors,2017,17(11):2554.
[6] YANG K H,HU,X H,et al.A review of indoor positioning technology research[J].Changjiang Information & Communications,2018(8):106-109.
[7]YAN D Y,SONG W,WANG X D,et al.Overview of the Deve-lopment Status of Indoor Positioning Technology in China[J].Journal of Navigation and Positioning,2019,7(4):512.
[8]WU Z,FU K,JEDARI E,et al.A fast and resource efficient method for indoor positioning using received signal strength[J].IEEE Transactions on Vehicular Technology,2016,65(12):9747-9758.
[9]QIAN W,LAURI F,GECHTER F.Supervised and semi-super-vised deep probabilistic models for indoor positioning problems[J].Neurocomputing,2021,435:228-238.
[10]GE X,QU Z.Optimization WiFi indoor positioning KNN algorithm location-based fingerprint[C]//Proceedings of Seventh International Conference on Software Engineering and Service Science.Beijing,China:IEEE,2016:135-137.
[11]LU Q,LIAO X,XU S,et al.A hybrid indoor positioning algorithm based on WiFi fingerprinting and pedestrian dead recko-ning[C]//Proceedings of 27th Annual International Symposium on Personal,Indoor,and Mobile Radio Communication(PIMRC).Valencia,Spain:IEEE,2016:1-6.
[12]SHI L F,WANG Y,LIU G X,et al.A fusion algorithm of indoor positioning based on PDR and RSS fingerprint[J].IEEE Sensors Journal,2018,18(23):9691-9698.
[13]YAO H,SHU H,SUN H,et al.An integrity monitoring algo-rithm for WiFi/PDR/smartphone-integrated indoor positioning system based on unscented Kalman filter[J].EURASIP Journal on Wireless Communications and Networking,2020,2020(1):1-25.
[14]OH J,KIM J.Adaptive K-nearest neighbour algorithm for WiFi fingerprint positioning[J].ICT Express,2018,4(2):91-94.
[15]ZHOU R,LU S,CHEN J,et al.An optimized space partitioning Technique to support two-layer WiFi fingerprinting[C]//Proceedings of 2017 IEEE Wireless Communications and Networking Conference(WCNC).San Francisco,CA,USA:IEEE,2017:1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!