计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600083-9.doi: 10.11896/jsjkx.230600083

• 人工智能 • 上一篇    下一篇

路径规划问题的多策略改进樽海鞘群算法研究

赵宏伟, 董昌林, 丁兵如, 柴海龙, 潘志伟   

  1. 沈阳大学信息工程学院 沈阳 110044
  • 发布日期:2024-06-06
  • 通讯作者: 董昌林(dong_clin@163.com)
  • 作者简介:(Zhw30@163.com)
  • 基金资助:
    国家自然科学基金(71672117);中国博士后科学基金(2019M651142)

Study on Multi-strategy Improved Salp Swarm Algorithm for Path Planning Problem

ZHAO Hongwei, DONG Changlin, DING Bingru, CHAI Hailong, PAN Zhiwei   

  1. School of Information Engineering,Shenyang University,Shenyang 110044,China
  • Published:2024-06-06
  • About author:DONG Changlin,born in 1999,is a graduate student and a member of CCF(No.H1948G).His main research interests include complex modeling and analysis.
  • Supported by:
    National Natural Science Foundation of China(71672117) and China Postdoctoral Science Foundation(2019M651142).

摘要: 针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。

关键词: 樽海鞘群算法, 无标度网络, 自适应权重, 黄金正弦算法, 路径规划

Abstract: Aiming at the problem of finding the optimal path for mobile robots,a salp swarm algorithm BAGSSA(adaptive salp swarm algorithm with scale-free of BA network and golden sine algorithm) combining scale-free network,adaptive inertia weight and golden sine algorithm mutation strategy is proposed.First,a scale-free topology network is generated to map the relationship of followers,so as to enhance the global optimization ability of the algorithm;and the adaptive inertia weight is introduced in the followers to form a spontaneous adjustment to the overall distribution of the population and enhance the ability of local optimization.The variation of the golden sine algorithm is selected to further improve the accuracy of the solution.Secondly,through the simulation solution of 12 benchmark functions,experimental data show that the average value,standard deviation,Wilcoxon test and convergence curve are better than that ofthe standard SSA and other swarm intelligence algorithms.The proposed algorithmhas higher optimization accuracy and convergence speed.Finally,BAGSSA is applied to the path planning problem of mobile robots,and simulation experiments are carried out in two test environments.Simulation results show that the improved salp swarm algorithm is better than other algorithms in finding the path,and has certain theoretical and practical application value.

Key words: Salp swarm algorithm, Scale-free network, Self-adaption weighty, Golden sine algorithm, Route planning

中图分类号: 

  • TP181
[1]WANG H W,MA Y,XIE Y,et al.Path Planning for Mobile Ro-bots Based on Smooth A* Algorithm[J].Journal of Tongji University(Natural Science Edition),2010,38(11):1647-1655.
[2]YU Z Z,YAN J H,ZHAO J,et al.Improved artificial potential field method for mobile robot path planning[J].Journal of Harbin Institute of Technology,2011,43(1):50-55.
[3]LI W S,SUN J,CHEN W.Real-time obstacle avoidance algorithm for robots based on BP neural network[J].Journal of Instrumentation,2019,40(11):204-211.
[4]ZHANG F H,LI N,YUAN R P,et al.Robot path planning algorithm based on reinforcement learning[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(12):65-70.
[5]ZHANG Q,CHEN B K,LIU X Y,et al.Optimal Path Planning for Mobile Robots Based on Improved Potential Field Ant Colony Algorithm[J].Journal of Agricultural Machinery,2019,50(5):23-32,42.
[6]WEI T G,LONG C N.Mobile robot path planning based on improved genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(4):703-711.
[7]KENNEDY J,EBERHARTR.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.IEEE,1995,4:1942-1948.
[8]MIRJALILI S,GANDOMI A H,MIRJALILIS Z,et al.SalpSwarm Algorithm:A bio-inspired optimizer for engineering design problems[J].Advances in engineering software,2017,114:163-191.
[9]SAYED G I,KHORIBA G,HAGGAGM H.A novel chaoticsalp swarm algorithm for global optimization and feature selection[J].Applied Intelligence,2018,48:3462-3481.
[10]YANG B,ZHONG L,ZHANG X,et al.Novel bio-inspiredmemetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition[J].Journal of cleaner production,2019,215:1203-1222.
[11]YU J S,WU L.TWO Types of Leaders Salp Swarm Algorithm[J].Computer Science,2021,48:254-260.
[12]HEGAZY A E,MAKHLOUF M A,EL-TAWEL G S.Improved salp swarm algorithm for feature selection[J].Journal of King Saud University-Computer and Information Sciences,2020,32(3):335-344.
[13]ZHANG H,LIU T,YE X,et al.Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems[J].Engineering with Computers,2023,39(3):1735-1769.
[14]NASRI D,MOKEDDEM D,BOUROUBAB,et al.A novel levy flight trajectory-based salp swarm algorithm for photovoltaic parameters estimation[J].Journal of Information and Optimization Sciences,2021,42(8):1841-1867.
[15]ZHANG Z Q,LU X F,SUI L S,et al.A Salp Swarm Algorithm Integrating Random Inertial Weights and Differential Mutation Operations[J].Computer Science,2020,47(8):297-301.
[16]REN H,LI J,CHEN H,et al.Stability of salp swarm algorithm with random replacement and double adaptive weighting[J].Applied Mathematical Modelling,2021,95:503-523.
[17]DING M F,WU K Q,XIAO P.Golden Sine Salp Group Algorithm Based on Multi-Strategy Fusion[J/OL].Journal of Nanjing University of Information Technology(Natural Science Edition):1-13.[2023-03-20].http://kns.cnki.net/kcms/detail/32.1801.N.20230313.1346.002.html.
[18]ZHANG Y,QIN L X.Improved Salp Swarm Algorithm Based on Levy Flight Strategy[J].Computer Science,2020,47(7):154-160.
[19]BARABÁSI A L,ALBERTR.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
[20]TANYILDIZI E,DEMIR G.Golden Sine Algorithm:A NovelMath-Inspired Algorithm[J].Advances in Electrical & Computer Engineering,2017,17(2):71-78.
[21]DERRAC J,GARCÍA S,MOLINAD,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation,2011,1(1):3-18.
[22]ZHANG D M,CHEN Z Y,XIN Z Y,et al.Crazy Adaptive Salp Swarm Algorithm[J].Control and Decision,2020,35(9):2112-2120.
[23]CHEN Z Y,ZHANG D M,XIN Z Y.Multi-subgroup symbiotic non-uniform Gaussian variant salp group algorithm[J].Acta Automatica Sinica,2022,48(5):1307-1317.
[24]STORN R,PRICE K.Differential evolution-a simple and efficient Heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341.
[25]MAURER C R,QI R,RAGHAVAN V.A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):265-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!