计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200008-7.doi: 10.11896/jsjkx.231200008

• 大数据&数据科学 • 上一篇    下一篇

基于季节分解的混合神经网络的时间序列预测

徐筠雯, 陈宗镭, 李天瑞, 李崇寿   

  1. 西南交通大学计算机与人工智能学院 成都 611756
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李崇寿(lics@swjtu.edu.cn)
  • 作者简介:(xujunwen@my.swjtu.edu.cn)
  • 基金资助:
    国家自然科学基金(62202395,62176221);四川省自然科学基金(2022NSFSC0930);中央高校基本科研业务费专项资金(2682022CX067)

Time Series Prediction of Hybrid Neural Networks Based on Seasonal Decomposition

XU Junwen, CHEN Zonglei, LI Tianrui, LI Chongshou   

  1. School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:XU Junwen,born in 1999,postgraduate.Her main research interests include seasonal decomposition and time series prediction.
    LI Chongshou,born in 1988,Ph.D,associate professor,is a member of CCF(No.J8308M).His main research interests include intelligent transportation,data analysis and AI.
  • Supported by:
    National Natural Science Foundation of China(62202395,62176221),Natural Science Foundation of Sichuan Province,China(2022NSFSC0930) and Fundamental Research Funds for the Central Universities of Ministry of Education of China(2682022CX067).

摘要: 近年来,时间序列预测已经在金融、气象、军事等多个领域得到广泛应用。深度学习已开始在时间序列预测任务中展现巨大的潜力和应用前景。其中,循环神经网络在跨度较大的时间序列预测中容易出现信息丢失和梯度爆炸等问题。而Transformer模型及其变种在使用注意力机制时通常忽略了时间序列变量之间的时序关系。为了应对这些问题,提出了一种基于季节分解的混合神经网络时间序列预测模型。该模型利用季节分解模块来捕获时间序列中不同周期频率分量的变化,同时通过融合多头注意力机制和复合扩张卷积层,利用全局信息和局部信息的交互获取数据之间的多尺度时序位置信息。最终,在4个领域的公开数据集上进行了实验,结果表明模型的预测性能优于当前的主流方法。

关键词: 时间序列预测, 季节分解, 注意力机制, 扩张卷积, 混合模型

Abstract: In recent years,time series forecasting has found widespread applications in various domains such as finance,meteoro-logy,and military.Deep learning has begun to demonstrate significant potential and application prospects in time series forecasting tasks.However,recurrent neural networks often encounter issues like information loss and exploding gradients when dealing with time series predictions over extended periods.In contrast,Transformer models and their variants,when utilizing attention mechanisms,typically overlook the temporal relationships between variables in time series data.To address these challenges,this paper proposes a hybrid neural network time series forecasting model based on seasonal decomposition.This model employs a seasonal decomposition module to capture the variations in different periodic frequency components within the time series.Simultaneously,by integrating multi-head self-attention mechanisms and composite dilated convolution layers,the model leverages the interaction between global and local information to obtain multi-scale temporal positional information among the data.Ultimately,experiments are conducted on publicly available datasets from 4 different domains,and the results indicate that the predictive perfor-mance of the proposed model surpasses that of current popular mainstream methods.

Key words: Time series forecasting, Seasonal decomposition, Self-attention mechanism, Dilated convolution, Hybrid model

中图分类号: 

  • TP181
[1]BÖSE J H,FLUNKERT V,GASTHAUS J,et al.Probabilistic demand forecasting at scale [C]//Proceedings of the VLDB Endowment.2017:1694-1705.
[2]MUDELSEE M.Trend analysis of climate time series:A review of methods [J].Earth-science Reviews,2019,190:310-322.
[3]TOPOLE J.High-performance medicine:the convergence of human and artificial intelligence[J].Nature Medicine,2019,25(1):44-56.
[4]GARDNER J E.Exponential smoothing:The state of the art[J].Journal of Forecasting,1985,4(1):1-28.
[5]WINTERS P.Forecasting sales by exponentially weighted mo-ving averages [J].Management Science,1960,6(3):324-342.
[6]VASWANI A,SHAZEER N,PARMARN,et al.Attention is allyou need[J].Advances in Neural Information Processing Systems,2017,30.
[7]RANGAPURAM S S,SEEGER M W,GASTHAUS J,et al.Deep state space models for time series forecasting [J].Advances in Neural Information Processing Systems,2018,31.
[8]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT Press,1995.
[9]HUBEL D H,WIESEL T N.Receptive fields of single neurones in the cat's striate cortex[J].The Journal of Physiology,1959,148(3):574.
[10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30.
[11]CHEN M,PENG H,FU J,et al.Autoformer:Searching transformers for visual recognition [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:12270-12280.
[12]DU S,LI T,YANG Y,et al.Multivariate time series forecasting via attention-based encoder-decoder framework[J].Neurocomputing,2020,388:269-279
[13]BOX GE P,JENKINS G M.Some recent advances in forecasting and control [J].Journal of the Royal Statistical Society,1968,17(2):91-109.
[14]CROSTON J D.Forecasting and stock control for intermittent demands [J].Journal of the Operational Research Society,1972,23(3):289-303.
[15]GRAVES A.Long short-term memory [M]//Supervised Sequence Labelling with Recurrent Neural Networks.2012:37-45.
[16]CHO K,VAN MERRIËNBOER B,BAHDANAU D,et al.Onthe properties of neural machine translation:Encoder-decoder approaches [J].arXiv:1409.1259,2014.
[17]SALINAS D,FLUNKERT V,GASTHAUSJ,et al.DeepAR:Probabilistic forecasting with autoregressive recurrent networks [J].International Journal of Forecasting,2020,36(3):1181-1191.
[18]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks [C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104.
[19]SMYLS.A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting[J].Interna-tional Journal of Forecasting,2020,36(1):75-85.
[20]LIU Y,WU H,WANG J,et al.Non-stationary transformers:Exploring the stationarity in time series forecasting[J].Advances in Neural Information Processing Systems,2022,35:9881-9893.
[21]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115.
[22]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions [J].arXiv:1511.07122,2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!