计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200008-7.doi: 10.11896/jsjkx.231200008
徐筠雯, 陈宗镭, 李天瑞, 李崇寿
XU Junwen, CHEN Zonglei, LI Tianrui, LI Chongshou
摘要: 近年来,时间序列预测已经在金融、气象、军事等多个领域得到广泛应用。深度学习已开始在时间序列预测任务中展现巨大的潜力和应用前景。其中,循环神经网络在跨度较大的时间序列预测中容易出现信息丢失和梯度爆炸等问题。而Transformer模型及其变种在使用注意力机制时通常忽略了时间序列变量之间的时序关系。为了应对这些问题,提出了一种基于季节分解的混合神经网络时间序列预测模型。该模型利用季节分解模块来捕获时间序列中不同周期频率分量的变化,同时通过融合多头注意力机制和复合扩张卷积层,利用全局信息和局部信息的交互获取数据之间的多尺度时序位置信息。最终,在4个领域的公开数据集上进行了实验,结果表明模型的预测性能优于当前的主流方法。
中图分类号:
[1]BÖSE J H,FLUNKERT V,GASTHAUS J,et al.Probabilistic demand forecasting at scale [C]//Proceedings of the VLDB Endowment.2017:1694-1705. [2]MUDELSEE M.Trend analysis of climate time series:A review of methods [J].Earth-science Reviews,2019,190:310-322. [3]TOPOLE J.High-performance medicine:the convergence of human and artificial intelligence[J].Nature Medicine,2019,25(1):44-56. [4]GARDNER J E.Exponential smoothing:The state of the art[J].Journal of Forecasting,1985,4(1):1-28. [5]WINTERS P.Forecasting sales by exponentially weighted mo-ving averages [J].Management Science,1960,6(3):324-342. [6]VASWANI A,SHAZEER N,PARMARN,et al.Attention is allyou need[J].Advances in Neural Information Processing Systems,2017,30. [7]RANGAPURAM S S,SEEGER M W,GASTHAUS J,et al.Deep state space models for time series forecasting [J].Advances in Neural Information Processing Systems,2018,31. [8]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT Press,1995. [9]HUBEL D H,WIESEL T N.Receptive fields of single neurones in the cat's striate cortex[J].The Journal of Physiology,1959,148(3):574. [10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30. [11]CHEN M,PENG H,FU J,et al.Autoformer:Searching transformers for visual recognition [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:12270-12280. [12]DU S,LI T,YANG Y,et al.Multivariate time series forecasting via attention-based encoder-decoder framework[J].Neurocomputing,2020,388:269-279 [13]BOX GE P,JENKINS G M.Some recent advances in forecasting and control [J].Journal of the Royal Statistical Society,1968,17(2):91-109. [14]CROSTON J D.Forecasting and stock control for intermittent demands [J].Journal of the Operational Research Society,1972,23(3):289-303. [15]GRAVES A.Long short-term memory [M]//Supervised Sequence Labelling with Recurrent Neural Networks.2012:37-45. [16]CHO K,VAN MERRIËNBOER B,BAHDANAU D,et al.Onthe properties of neural machine translation:Encoder-decoder approaches [J].arXiv:1409.1259,2014. [17]SALINAS D,FLUNKERT V,GASTHAUSJ,et al.DeepAR:Probabilistic forecasting with autoregressive recurrent networks [J].International Journal of Forecasting,2020,36(3):1181-1191. [18]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks [C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104. [19]SMYLS.A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting[J].Interna-tional Journal of Forecasting,2020,36(1):75-85. [20]LIU Y,WU H,WANG J,et al.Non-stationary transformers:Exploring the stationarity in time series forecasting[J].Advances in Neural Information Processing Systems,2022,35:9881-9893. [21]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115. [22]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions [J].arXiv:1511.07122,2015. |
|