计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200103-7.doi: 10.11896/jsjkx.231200103

• 智能计算 • 上一篇    下一篇

均衡加权图着色问题与启发式算法

欧开明, 江华   

  1. 云南大学软件学院 昆明 650504
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 江华(huajiang@ynu.edu.cn)
  • 作者简介:(750778507@qq.com)
  • 基金资助:
    国家自然科学基金(62162066)

Balanced Weighted Graph Coloring Problem and Its Heuristic Algorithms

OU Kaiming, JIANG Hua   

  1. School of Software,Yunnan University,Kunming 650504,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:OU Kaiming,born in 1997,postgra-duate .His main research interest is opti-mization problems.
    JIANG Hua,born in 1978,Ph.D,associate professor,is a professional member of CCF(No.D7308M).His main research interests include practical algorithm solving for combinatorial optimization problems,algorithms for social network analysis and graph theory.
  • Supported by:
    National Natural Science Foundation of China(62162066).

摘要: 给定一个无向图G和一个颜色数k,图的k着色问题(GCP)指给G中的每个顶点分配k种颜色中的一种,使得任意相邻的两个顶点获得不同的颜色。均衡资源分配是将资源尽可能均匀地分配给各个参与者,旨在实现资源的公平利用和任务的合理分担。针对传统的图着色问题无法解决均衡资源分配的情况,提出了图着色问题的一个新变种——均衡加权图着色问题,其目标是寻找合法的着色使得每种颜色类的权值和的标准差最小。提出了一种将两种局部搜索结合到进化算法中的HEA-TLS算法来寻找该问题的最优解。基于新颖性的局部搜索的目的是寻找到一个合法解。改善解均衡性的局部搜索的目的是在合法解的基础上,改善解的均衡性。进化算法中设计了一个均衡权值交叉,可以根据父代颜色类权值的变化自适应地选择传递给子代的颜色类,通过种群的遗传进化来产生更加均衡的着色解。在DIMACS图上使用通用求解器CPLEX进行对比评估,HEA-TLS在所有测试中取得了几乎最优的结果,验证了所提方法的有效性。

关键词: 图着色, 均衡加权图着色问题, 局部搜索, 混合进化算法

Abstract: Given an undirected graph G and a number of colors k,the graph k-coloring problem(GCP) refers to assigning one of k colors to each vertex in G such that any two adjacent vertices receive different colors.Balanced resource allocation is to distribute resources as evenly as possible to each participant,aiming to achieve fair utilization of resources and reasonable sharing of tasks.Aiming at the situation that the traditional graph coloring problem cannot solve the balanced resource allocation,a new variant of the graph coloring problem,the balanced weighted graph coloring problem,is proposed,whose goal is to find a legal coloring that minimizes the standard deviation of the sum of the weights of each color class.A HEA-TLS algorithm that combines two local searches into an evolutionary algorithm is proposed to find an optimal solution to this problem.The novelty-based local search aims to find a legitimate solution.The purpose of the local search for improving the equilibrium of the solution is to improve the equilibrium of the solution based on the legitimate solution.A balanced weight crossover is designed in the evolutionary algorithm,which can adaptively select the color classes to be passed to the offspring according to the changes in the weights of the parent color classes,to produce a more balanced coloring solution through genetic evolution of the population.In a comparative evaluation using the generalized solver CPLEX on the DIMACS graph,HEA-TLS achieves almost optimal results in all tests,va-lidating the effectiveness of the proposed method.

Key words: Graph coloring, Balanced weighted graph coloring problem, Local search, Hybrid evolutionary algorithm

中图分类号: 

  • TP301
[1]FURINI F,MALAGUTI E.Exact weighted vertex coloring viabranch-and-price[J].Discrete Optimization,2012,9(2):130-136.
[2]GONG G W,XIE T,ZHAO H T et al.A graph coloring-based resource allocation algorithm for large-scale UAV swarm 3D network[J].Signal Processing,2022,38(8):1693-1702.
[3]HAN G L,DU W.Research on the application of graph coloring model in the parking space allocation problem[J].Telecommunications Information,2019(7):27-33.
[4]GE R L,JIANG L,CHEN M Y et al.Spectrum allocation algorithm for elastic optical networks based on graph coloring model[J].Optical Communication Technology,2023,47(2):59-63.
[5]DEOGRATIAS E.Using Graph Coloring for Effective Time-table Scheduling at Ordinary Secondary Level[J].International Journal of Curriculum and Instruction,2022,14(2):1166-1188.
[6]LI Z,WANG S,LI W D,et al.A VRP-based Approach for the Airline Crew Pairing Problem[C]//2022 10th International Conference on Information Systems and Computing Technology(ISCTech).IEEE,2022:309-315.
[7]PRAJAPATI V K,JAIN M,CHOUHAN L.Tabu search algorithm(TSA):A comprehensive survey[C]//2020 3rd Interna-tional Conference on Emerging Technologies in Computer Engineering:Machine Learning and Internet of Things(ICETCE).IEEE,2020:1-8.
[8]WEI Z,HAO J K.Kernel based tabu search for the Set-unionKnapsack Problem[J].Expert Systems with Applications,2021,165:113802.
[9]MIRJALLI S,DONG J S,LEWIS A.Ant colony optimizer:Theory,literaturereview,and application in AUV path planning:Methods and applications[J].Studies in Computational lntelligence,2020,811:7-21.
[10]KOSE A,SONMEZ B A,BALABAN M.Simulated annealing algorithm for graph coloring[J].arXiv:1712.00709,2017.
[11]LÜ Z,HAO J K.A memetic algorithm for graph coloring[J].European Journal of Operational Research,2010,203(1):241-250.
[12]HAO J K.Memetic algorithms in discrete optimization[M]//Handbook of Memetic Algorithms.Berlin,Heidelberg:Springer Berlin Heidelberg,2012:73-94.
[13]TITILOYE O,CRISPIN A.Graph coloring with a distributedhybrid quantum annealing algorithm[C]//Agent and Multi-Agent Systems:Technologies and Applications:5th KES International Conference(KES-AMSTA 2011).Manchester,UK,Springer Berlin Heidelberg,2011:553-562.
[14]ARDELEAN S M,UDRESCU M.Graph coloring using the reduced quantum genetic algorithm[J].PeerJ Computer Science,2022,8:e836.
[15]MOALIC L,GONDRAN A.Variations on memetic algorithmsfor graph coloring problems[J].Journal of Heuristics,2018,24:1-24.
[16]WU J,CHANG Z,YUAN L,et al.A memetic algorithm for resource allocation problem based on node-weighted graphs [application notes][J].IEEE Computational Intelligence Magazine,2014,9(2):58-69.
[17]LEHMAN J,STANLEY K O.Novelty search and the problemwith objectives[C]//Genetic Programming Theory and Practice IX.Berlin:Springer,2011:37-56.
[18]WANG J C,WANG S,LI Z,et al.Improved algorithm for forbidden search in graph coloring problem[J].Computer Science,2022,49(S2):94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!