计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200125-5.doi: 10.11896/jsjkx.231200125
陈晓1,4, 张权淏2, 施建锋3,4, 朱建月3,4
CHEN Xiao1,4, ZHANG Quanhao2, SHI Jianfeng3,4, ZHU Jianyue3,4
摘要: 智能反射面(Intelligent Reflecting Surface,IRS)技术被认为是下一代无线通信中颇具潜力的技术之一。现有的IRS辅助多输入多输出(Multiple Input Multiple Output,MIMO)系统的波束成形设计对天线的计算能力要求很高,仍然是一个极具挑战的难题。为了克服这一难题,提出了一种用于IRS辅助多用户MIMO系统的基于深度学习的联合波束成形设计方案,以实现系统多用户和数据传输速率的最大化。该方案利用深度学习卷积神经网络学习和优化了基站端数字波束成形,同时设计出最优IRS端反射波束成形。所提方案克服了神经网络直接预测波束成形矩阵的困难,仅预测从波束成形矩阵中提取的关键特征,对神经网络预测能力的需求大大降低,并将线下训练及优化的结果用于线上,显著降低了实时计算复杂度。仿真结果显示,提出的最优波束成形能获得超过0.5~1bit/s/Hz的系统和速率性能提升,且该优势会随着用户数增多而增大。
中图分类号:
[1]OU L,LIAO S,QIN Z,et al.Millimeter Wave Wireless Ha-damard Image Transmission for MIMO Enabled 5G and Beyond[J].IEEE Wireless Communications,2020,27(6):134-139. [2]GUI G,LIU M,TANG F,et al.6G:Opening New Horizons forIntegration of Comfort,Security,and Intelligence[J].IEEE Wireless Communications,2020,27(5):126-132. [3]WU Q,ZHANG R.Intelligent Reflecting Surface EnhancedWireless Network via Joint Active and Passive Beamforming[J].IEEE Transactions on Wireless Communications,2019,18(11):5394-5409. [4]HUANG C,ZAPPONE A,ALEXANDROPOULOS G C,et al.Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[J].IEEE Transactions on Wireless Communications,2019,18(8):4157-4170. [5]XIE H,XU J,LIU Y F.Max-Min Fairness in IRS-Aided Multi-Cell MISO Systemswith Joint Transmit and Reflective Beamforming[J].IEEE Transactions on Wireless Communications,2021,20(2):1379-1393. [6]MUNAWAR M,LEE K.Low-Complexity Adaptive SelectionBeamforming for IRS-Assisted Single-User Wireless Networks[J].IEEE Transactions on Vehicular Technology,2023,72(4):5458-5462. [7]LIN T,CONG J,ZHU Y,et al.Hybrid Beamforming for Millimeter Wave Systems Using the MMSE Criterion[J].IEEE Transactions on Communications,2019,67(5):3693-3708. [8]SOHRABI F,YU W.Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays[J].IEEE Journal of Selected Topics in Signal Processing,2016,10(3):501-513. [9]AYACH O E,RAJAGOPAL S,ABU-SURRA S,et al.Spatially Sparse Precoding in Millimeter Wave MIMO Systems[J].IEEE Transactions on Wireless Communications,2014,13(3):1499-1513. [10]LIN T,ZHU Y.Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning[J].IEEE Wireless Communications Letters,2020,9(1):103-107. [11]GAO J,ZHONG C,CHEN X,et al.Unsupervised Learning for Passive Beamforming[J].IEEE Communications Letters,2020,24(5):1052-1056. [12]SHI Y,KINAR A,SIDIROPOULOS N D,et al.Learning to Beamform for Minimum Outage[J].IEEE Transactions on Signal Processing,2018,66(19):5180-5193. [13]ALKHATEEB A,ALEX S,VARKEY P,et al.Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems[J].IEEE Access,2018,6:37328-37348. [14]SUN H,CHEN X,SHI Q,et al.Learning to Optimize:Training Deep Neural Networks for Wireless Resource Management[C]//2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).2017:1-6. [15]LIANG F,SHEN C,YU W.Towards Optimal Power Control via Ensembling Deep Neural Networks[J].IEEE Transactions on Communications,2020,68(3):1760-1776. [16]XIA W,ZHENG G,ZHU Y,et al.A Deep Learning Framework for Optimization of MISO Downlink Beamforming[J].IEEE Transactions on Communications,2020,68(3):1866-1880. [17]BJÖRNSON E,BENGTSSON M,OTTERSTEN B.OptimalMultiuser Transmit Beamforming:A Difficult Problem with a Simple Solution Structure[J].IEEE Signal Processing Magazine,2014,31(4):142-148. |
|