计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 250-258.doi: 10.11896/jsjkx.231100147
刘东旭1, 段利国1,2, 崔娟娟1, 常轩伟1
LIU Dongxu1, DUAN Liguo1,2, CUI Juanjuan1, CHANG Xuanwei1
摘要: 短文本语义匹配任务的目的是判断两个短文本句子的语义是否一致。然而,现有的许多方法往往存在短文本语义信息不足、无法有效识别同义词等问题。针对这些不足,提出一种融合义原相似度矩阵与字词向量双通道的短文本语义匹配策略。首先,利用预训练模型Bert对输入的句子对进行编码;然后,对于句子中词级别的语义信息,利用FastText模型训练并获取文本的词向量,并加入BiLSTM模型进一步提取上下文语义信息。为了有效利用义原信息,在上述的双通道中分别加入多头注意力和用于对分离向量进行交互计算的协同注意力,并在注意力中分别融入对应的义原相似度矩阵,最后综合上述两部分向量推断出语义的一致性。在金融领域数据集BQ和开放域数据集LCQMC上的实验证明了所提算法的有效性。
中图分类号:
[1]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//North American Chapter of the Association for Computational Linguistics.Minneapolis,Minnesota:ACL,2019:4171-4186. [2]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[J].Advances In Neural Information Processing Systems,2017,30:5998-6008. [3]QI F,YANG C,LIU Z,et al.Openhownet:An Open Sememe-based Lexical Knowledge Base[J].arXiv:1901.09957,2019. [4]ARMAND J,EDOUARD G,PIOTR B,et al.Bag of Tricks for Efficient Text Classification[C]//Conference of the European Chapter of the Association for Computational Linguistics.Valencia,Spain:ACL,2017:427-431. [5]HUANG Z H,XU W,YU K.Bidirectional LSTM-CRF Models for Sequence Tagging[J].arXiv:1508.01991,2015. [6]LU J,YANG J,BATRA D,et al.Hierarchical Question-Image Co-Attention for Visual Question Answering[C]//Conference on Neural Information Processing Systems.2016:289-297. [7]HUANG P S,HE X D,GAO J F,et al.Learning Deep Structured Semantic Models for Web Search Using Click through Data[C]//International Conference on Information and Knowledge Management.2013:2333-2338. [8]CHEN Q,ZHU X D,LING Z H,et al.Enhanced LSTM For Natural Language Inference[C]//Annual Meeting of the Association for Computational Linguistics.2017:1657-1668. [9]GONG Y C,LUO H,ZHANG J.Natural Language Inferenceover Interaction Space[J].arXiv:1709.04348,2017. [10]TAN C,WEI F,WANG W H,et al.Multiway Attention Networks for Modeling Sentence Pairs[C]//International Joint Conference on Artificial Intelligence.2018:4411-4417. [11]LAN Z Z,CHEN M,GOODMAN S,et al.Albert:A Lite Bert for Self-supervised Learning of Language Representations[C]//International Conference on Learning Representations.2020. [12]LIU Y H,OTT M,GOYAL N,et al.Roberta:A Robustly Optimized Bert Pretraining Approach[J].arXiv:1907.11692,2019. [13]ZHANG Z S,WU Y W,ZHAO H,et al.Semantics-aware BERT for Language Understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:9628-9635. [14]ZHANG Z Y,HAN X,LIU Z Y,et al.ERNIE:Enhanced Language Representation with Informative Entities[C]//Procee-dings of the 57th Annual Meeting of the Association for Computational Linguistics.Italy:ACL,2019:1441-1451. [15]LIU W J,ZHOU P,ZHAO Z,et al.K-Bert:Enabling Language Representation with Knowledge Graph[C]//AAAI Conference on Artificial Intelligence.2020:2901-2908. [16]HE P C,LIU X D,GAO J F,et al.DeBERTa:Decoding-en-hanced BERT with Disentangled Attention[C]//International Conference on Learning Representations.2021. [17]LYU B,CHEN L,ZHU S,et al.Let:Linguistic Knowledge Enhanced Graph Transformer for Chinese Short Text Matching[C]//AAAI Conference on Artificial Intelligence.2021:13498-13506. [18]BAI J G,WANG Y J,CHEN Y R,et al.Syntax-BERT:Improving Pre-trained Transformers with Syntax Trees[C]//Confe-rence of the European Chapter of the Association for Computational Linguistics.Minneapolis,Minnesota:ACL,2021:3011-3020. [19]LI Y L,ZHOU Y P.Text Similarity Matching Based on Twin Network and Char-Word Vector Combination[J].Applications of Computer Systems,2022,31(10):295-302. [20]LYU X F,ZHAO S L,GAO H D,et al.Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network[J].Computer Science,2022,49(9):92-100. [21]YU E,DU L,JIN Y,et al.Learning Semantic Textual Similarity via Topic-informed Discrete Latent Variables[C]//Conference on Empirical Methods in Natural Language Processing.2022:4937-4948. [22]WANG S,LIANG D,SONG J,et al.DABERT:Dual Attention Enhanced BERT for Semantic Matching[C]//International Conference on Computational Linguistics.2022:1645-1654. [23]ZOU Y C,LIU H W,GUI T,et al.Divide and Conquer:Text Semantic Matching with Disentangled Keywords and Intents[C]//Annual Meeting of the Association for Computational Linguistics.Findings of the Association for Computational Linguistics.Dublin,Ireland:ACL,2022:3622-3632. [24]CHEN M Y,JIANG H Y,YANG Y J.Context Enhanced Short Text Matching using Clickthrough Data[J].arXiv:2203.01849,2022. [25]ZHANG H Y,DUAN L G,WANG Q C,et al.Long Text Multi-entity Emotion Analysis Based on Multi-task Joint Training[J].Computer Science,2024,51(6):309-316. [26]JIANG K X,ZHAO Y H,JIN G Z,et al.KETM:A Knowledge-Enhanced Text Matching Method[C]//International Joint Conference on Neural Networks.2023:1-8. [27]WU Z B,PALMER M.Verb Semantics and Lexical Selection[C]//Annual Meeting of the Association for Computational Linguistics.1994:27-30. [28]CUI Y M,CHE W X,LIU T,et al.Revisiting Pre-Trained Mo-dels for Chinese Natural Language Processing[C]//Findings of the Association for Computational Linguistics:EMNLP.2020:657-668. [29]BAI J,BAI S,CHU Y F,et al.Qwen Technical Report[J].ar-Xiv:2309.16609,2023. [30]YANG A Y,XIAO B,WANG B N,et al.Baichuan2:OpenLarge-scale Language Models[J].arXiv:2309.10305,2023. |
|