计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500180-8.doi: 10.11896/jsjkx.230500180
曾培益
ZENG Peiyi
摘要: 钢铁材料微观组织决定了钢的力学性能,因此对钢材微观组织的识别十分重要。钢铁材料显微组织图片放大倍数差异大,同种微观组织在不同放大倍数下的形貌也有很大差别,对持续扩充的多尺度钢材微观组织数据集进行分类的难度很大。因此,结合VGG16网络和自组织增量神经网络(Self Organizing Incremental Neural Network,SOINN),构建基于增量学习的多尺度钢材微观组织图像分类模型;同时,提出基于中心距离的交叉熵损失(Cross Entropy Loss based on Center Distance,CELCD)和交叉训练策略,并融合 交叉训练、CELCD和Anchor loss克服“灾难性遗忘”问题,实现对钢材微观组织图片数据的持续学习和高效分类。实验比较了不同增量学习方法在旧数据上的分类精度和“遗忘程度”,结果表明,在增量学习后所提方法的预测精度较增量学习前仅下降14.02% 的前提下,在旧数据上的分类精度最高可达80.49%,与上限精度仅相差5.49%,优于其他增量学习方法。
中图分类号:
[1]AZIMI S M,BRITZ D,ENGSTLER M,et al.Advanced steel microstructural classification by deep learning methods[J].Scientific Reports,2018,8(1):2128-2128. [2]LI W G,YANG W,ZHAO Y T,et al.A new method to predict mechanical properties for micro-alloyed steels via industrial data and mechanism analysis[J].Journal of Iron and Steel Research International,2019,26(3):230-241. [3]MAISURADZE M V,RYZHKOV M A,LEBEDEV D I.Microstructure of the Heat Treated Advanced Low Carbon Steel[J].Solid State Phenomena,2021,316:252-257. [4]LI W G,SHEN J C,XIE L et al.Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network[J].Journal of Electronics &Information Technology,2021,43:1-8. [5]LOSING V,HAMMER B,WERSING H.Incremental on-line learning:A review and comparison of state of the art algorithms[J].Neurocomputing,2018,275:1261-1274. [6]YU C,ZHOU Q,LI J,et al.Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:23685-23694. [7]ZHU F,ZHANG X Y,WANG C,et al.Prototype augmentation and self-supervision for incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:5871-5880. [8]CHOWDHURY A,KAUTZ E,YENER B,et al.Image drivenmachine learning methods for microstructure recognition[J].Computational Materials Science,2016,123:176-187. [9]LUBBERS N,LOOKMAN T,BARROS K.Inferring low-dimensional microstructure representations using convolutional neural networks[J].Physical Review E,2017,96(5):052111. [10]DECOST B L,FRANCIS T,HOLM E A.Exploring the microstructure manifold:Image texture representations applied to ultrahigh carbon steel microstructures[J].Acta Materialia,2017,133:30-40. [11]LI W G,SHEN J C,FAN L X et al.Automatic identification of microstructure of iron and steel material based on convolutional neural network[J].Journal of Iron and Steel Research,2020,32(1):33-43. [12]MALLYA A,LAZEBNIK S.Packnet:Adding multiple tasks to a single network by iterative pruning[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,Utah:2018:7765-7773. [13]FERNANDO C,BANARSE D,BLUNDELL C,et al.PathNet:Evolution channels gradient descent in super neural networks[J].arXiv:1701.08734,2017. [14]RUSU A A,RABINOWITZ N C,DESJARDINS G,et al.Progressive neural networks[J].arXiv:1606.04671,2016. [15]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.ICaRL:Incremental classifier and representation learning[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii.2017:5533-5542. [16]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[C]//Proceeding of the Conference and Workshop on Neural Information Processing Systems.Palais des Congrès de Montréal,Canada,2014. [17]CHAUDHRY A,RANZATO M,ROHRBACH M,et al.Efficient lifelong learning with A-GEM[C]//Proceeding of the International Conference on Learning Representations.Vancouver,Canada,2018. [18]CASTRO F M,MARÍN-JIMÉNEZ M J,GUIL N,et al.End-to-end incremental learning[C]//Proceeding of the European Conference on Computer Vision.Munich,Germany 2018:233-248. [19]WU Y,CHEN Y,WANG L,et al.Large scale incrementallearning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,California,2019:374-382. [20]ALJUNDI R,LIN M,GOUJAUD B,et al.Gradient based sample selection for online continual learning[J].Advances in Neural Information Processing Systems,2019,32:11816-11825. [21]WANG Z,SHEN Y.Incremental Learning for Multi-Interest Sequential Recommendation[C]//2023 IEEE 39th International Conference on Data Engineering(ICDE).IEEE,2023:1071-1083. [22]LI Z,HOIEM D.Learning without forgetting[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2017,40(12):2935-2947. [23]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proc. Natl. Acad. Sci. USA,2016,114(13):3521-3526. [24]DHAR P,SINGH R V,PENG K C,et al.Learning withoutmemorizing[C]//Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,California,2019:5138-5146. [25]HOU S,PAN X,LOY C C,et al.Learning a unified classifier incrementally via rebalancing[C]//Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,California,2019:831-839. [26]ZHANG J,ZHANG J,GHOSHS,et al.Class-incremental lear-ning via deep model consolidation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Snowmass Village,USA.2020:1131-1140. [27]TAO X,HONG X,CHANG X,et al.Few-shot class-incremental learning[C]//Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12183-12192. [28]KOHONEN T.Self-organized formation of topologically correct feature maps[J].Biological Cybernetics,1982,43(1):59-69. [29]MARTINETZ T,SCHULTEN K.A “neural-gas” networklearns topologies[J/OL].Artificial Neural Networks,1991,397-402.https://www.ks.uiuc.edu/Publications/Papers/PDF/MART91B/MART91B.pdf. [30]MARTINETZ T M,BERKOVICH S G,SCHULTEN K J.Neural Gas network for vector quantization and its application to time-series prediction[J].IEEE Transactions on Neural Networks,1993,4(4):558-569. [31]MARTINETZ T M,SCHULTEN K J.Topology representing network[J].Neural Networks,1994,7(3):507-522. [32]GRAY R M.Vector quantization[J].IEEE ASSP Magazine,1984,1(2):4-29. [33]FRITZKE B.A growing neural gas network learns topologies[J].Advances in Neural Information Processing Systems,1995,7:625-632. [34]FURAO S,HASEGAWAO.An incremental network for on-line unsupervised classification and topology learning[J].Neural Networks,2006,19(1):90-106. [35]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [36]WEN Y,ZHANG K,LI Z,et al.A discriminative feature learning approach for deep face recognition[C]//European Confe-rence on Computer Vision.Cham:Springer,2016:499-515. [37]KINGMA D,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
|