计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200189-9.doi: 10.11896/jsjkx.241200189

• 信息安全 • 上一篇    下一篇

基于GAN的对抗网络流量生成研究

杨琳1, 林宏刚1,2   

  1. 1 成都信息工程大学网络空间安全学院(芯谷产业学院) 成都 610225
    2 先进密码技术与系统安全四川省重点实验室 成都 610225
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 林宏刚(linhg@cuit.edu.cn)
  • 作者简介:linyang_24330@163.com
  • 基金资助:
    国家242信息安全计划项目(2021-037);四川省自然科学基金项目(2024NSFSC0515)

Research on Generating Adversarial Network Traffic Based on Generative Adversarial Network

YANG Lin1, LIN Honggang1,2   

  1. 1 College of Cyberspace Security,Chengdu University of Information Technology,Chengdu 610225,China
    2 Sichuan Key Laboratory of Advanced Cryptography and System Security,Chengdu 610225,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National 242 Information Security Plan Project(2021-037) and Sichuan Provincial Natural Science Foundation Project(2024NSFSC0515).

摘要: 对抗网络流量在设备隐私保护和网络安全等领域扮演着重要角色,然而目前对抗网络流量生成方法缺乏对质量的约束,导致生成的流量偏离原始流量特性,在实际应用中丧失其对抗能力。因此,提出一种基于GAN的对抗网络流量生成方法,改进生成器设计,以卷积神经网络提取原始流量特征的抽象表示,经基础迭代算法生成扰动,确保扰动保持原始流量的特性;优化生成器损失函数,实现生成流量与原始流量之间的最小差异;引入干扰器模块,利用网格搜索算法为扰动分配权重并优选参数组合,保证生成流量的多样性。为了综合考虑特征空间距离差异与相对变化速率对生成质量的影响,提出相对差异扰动量指标,能更准确地评估对抗网络流量与原始流量之间的差异。实验结果表明,在有效扰动范围内,相较于其他方法,该方法生成的对抗网络流量对目标分类模型保持高欺骗率的同时,产生的L∞扰动量与相对差异扰动量均更小,与原始流量的相似性更高,有效提高了对抗网络流量的生成质量。

关键词: 生成对抗网络, 对抗网络流量, 相对差异扰动, 相似性保持目标函数, 生成质量控制

Abstract: Adversarial network traffic plays a crucial role in fields such as device privacy protection and network security.How-ever,current adversarial network traffic generation methods lack constraints on quality,resulting in generated traffic that deviates from the original traffic characteristics,thereby losing its adversarial capability in practical applications.Therefore,this paper proposes a GAN-based adversarial network traffic generation method,which improves the generator design.The convolutional neural network is employed to extract abstract representations of original traffic features,and perturbations are generated through basic iterative algorithms to ensure that the perturbations maintain the characteristics of the original traffic.The generator loss function is optimized to achieve minimal differences between the generated traffic and the original traffic.Additionally,a perturber module is introduced,utilizing a grid search algorithm to assign weights to perturbations and optimize parameter combinations,ensuring the diversity of the generated traffic.To comprehensively consider the impact of feature space distance differences and relative change rates on generation quality,a relative difference disturbance metric is proposed to more accurately evaluate the differences between adversarial network traffic and the original traffic.Experimental results show that,within an effective perturbation range,compared to other methods,the adversarial network traffic generated by this method maintains a high deception rate for target classification models while producing smaller L disturbance and relative difference disturbance values,and exhibiting higher similarity to the original traffic,effectively improving the generation quality of adversarial network traffic.

Key words: Generative adversarial network, Adversarial network traffic, Relative differential disturbance, Similarity preservation objective function, Generative quality control

中图分类号: 

  • TP393
[1]ZHANG W,LIU Y,FENG Y,et al.A Comprehensive Review of Network Reconnaissance and Defense Technologies [J].Communications Technology,2022,55(10):1247-1256.
[2]HUI S,WANG H,WANG Z,et al.Knowledge Enhanced GANfor IoT Traffic Generation[C]//Proceedings of the ACM Web Conference.2022:3336-3346.
[3]JIA Z P,FANG B X,LIU C G,et al.Overview of Network Deception Techniques [J].Journal of Communications,2017,38(12):128-143.
[4]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Nets[C]//28th Conference on Neural Information Processing Systems(NIPS).2014.
[5]WANG J,LU B,ZHU Y F.A Survey on the Generation and Application of Adversarial Network Traffic [J].Computer Science,2022,49(S2):651-661.
[6]ZHANG X,HAMM J,REITER M K,et al.Statistical Privacy for Streaming Traffic[C]//Proceedings of the 26th ISOC Symposium on Network and Distributed System Security.2019.
[7]HU Y J,GUO Y B,MA J,et al.Method for Generating Network Deceptive Traffic Based on Adversarial Samples [J].Journal of Communications,2020,41(9):59-70.
[8]MOORE A,ZUEV D,CROGAN M.Discriminators for use in flow-based classification[EB/OL].https://www.cl.cam.ac.uk/~awm22/publication/RR-05-13.pdf.
[9]RIGAKI M.Adversarial Deep Learning Against Intrusion Detection Classifiers[C]//2017 NATO IST-152 Workshop on Intelligent Autonomous Agents for Cyber Defence and Resilience(IST-152 2017).2017.
[10]HUANG C H,LEE T H,CHANG L,et al.Adversarial Attacks on SDN-based Deep Learning IDS System[C]//Mobile and Wireless Technology 2018:International Conference on Mobile and Wireless Technology(ICMWT 2018).Springer,2019:181-191.
[11]IBITOYE O,SHAFIQ O,MATRAWY A.Analyzing AdversarialAttacks Against Deep Learning for Intrusion Detection inIoT Networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6.
[12]LI J,ZHOU L,LI H,et al.Dynamic Traffic Feature Camouflaging Via Generative Adversarial Networks[C]//2019 IEEE Conference on Communications and Network Security(CNS).IEEE,2019:268-276.
[13]CHOUGULE A,AGRAWAL K,CHAMOLA V.Scan-gan:Generative Adversarial Network Based Synthetic Data Generation Technique for Controller Area Network[J].IEEE Internet of Things Magazine,2023,6(3):126-130.
[14]ANANDE T J,AL-SAADI S,LEESON M S.Generative Adversarial Networks for Network Traffic Feature Generation[J].International Journal of Computers and Applications,2023,45(4):297-305.
[15]HUI S,WANG H,WANG Z,et al.Knowledge Enhanced GAN forIoT Traffic Generation[C]//Proceedings of the ACM Web Conference 2022.2022:3336-3346.
[16]HUANG Y,CHEN Y,ZHANG Y,et al.TFHM:A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks[C]//2022 7th IEEE International Conference on Data Science in Cyberspace(DSC).IEEE,2022:175-182.
[17]LI J,ZHOU L,LI H X,et al.Network Traffic Feature Camouflage Technology Based on Generative Adversarial Networks [J].Computer Engineering,2019,45(12):119-126.
[18]SIVANATHAN A,SHERRATT D,GHARAKHEILI H H,et al.Characterizing and Classifying IoT Traffic in Smart Cities and Campuses[C]//2017 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2017:559-564.
[19]MIETTINEN M,MARCHAL S,HAFEEZ I,et al.IoT Sentinel:Automated Device-type Identification for Security Enforcement in IoT[C]//2017 IEEE 37th International Conference on Distributed Computing Systems(ICDCS).IEEE,2017:2177-2184.
[20]LI J,WANG D,LI S,et al.Deep Learning Based Adaptive Sequential Data Augmentation Technique for the Optical Network Traffic Synthesis[J].Optics Express,2019,27(13):18831-18847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!