计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200189-9.doi: 10.11896/jsjkx.241200189
杨琳1, 林宏刚1,2
YANG Lin1, LIN Honggang1,2
摘要: 对抗网络流量在设备隐私保护和网络安全等领域扮演着重要角色,然而目前对抗网络流量生成方法缺乏对质量的约束,导致生成的流量偏离原始流量特性,在实际应用中丧失其对抗能力。因此,提出一种基于GAN的对抗网络流量生成方法,改进生成器设计,以卷积神经网络提取原始流量特征的抽象表示,经基础迭代算法生成扰动,确保扰动保持原始流量的特性;优化生成器损失函数,实现生成流量与原始流量之间的最小差异;引入干扰器模块,利用网格搜索算法为扰动分配权重并优选参数组合,保证生成流量的多样性。为了综合考虑特征空间距离差异与相对变化速率对生成质量的影响,提出相对差异扰动量指标,能更准确地评估对抗网络流量与原始流量之间的差异。实验结果表明,在有效扰动范围内,相较于其他方法,该方法生成的对抗网络流量对目标分类模型保持高欺骗率的同时,产生的L∞扰动量与相对差异扰动量均更小,与原始流量的相似性更高,有效提高了对抗网络流量的生成质量。
中图分类号:
| [1]ZHANG W,LIU Y,FENG Y,et al.A Comprehensive Review of Network Reconnaissance and Defense Technologies [J].Communications Technology,2022,55(10):1247-1256. [2]HUI S,WANG H,WANG Z,et al.Knowledge Enhanced GANfor IoT Traffic Generation[C]//Proceedings of the ACM Web Conference.2022:3336-3346. [3]JIA Z P,FANG B X,LIU C G,et al.Overview of Network Deception Techniques [J].Journal of Communications,2017,38(12):128-143. [4]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Nets[C]//28th Conference on Neural Information Processing Systems(NIPS).2014. [5]WANG J,LU B,ZHU Y F.A Survey on the Generation and Application of Adversarial Network Traffic [J].Computer Science,2022,49(S2):651-661. [6]ZHANG X,HAMM J,REITER M K,et al.Statistical Privacy for Streaming Traffic[C]//Proceedings of the 26th ISOC Symposium on Network and Distributed System Security.2019. [7]HU Y J,GUO Y B,MA J,et al.Method for Generating Network Deceptive Traffic Based on Adversarial Samples [J].Journal of Communications,2020,41(9):59-70. [8]MOORE A,ZUEV D,CROGAN M.Discriminators for use in flow-based classification[EB/OL].https://www.cl.cam.ac.uk/~awm22/publication/RR-05-13.pdf. [9]RIGAKI M.Adversarial Deep Learning Against Intrusion Detection Classifiers[C]//2017 NATO IST-152 Workshop on Intelligent Autonomous Agents for Cyber Defence and Resilience(IST-152 2017).2017. [10]HUANG C H,LEE T H,CHANG L,et al.Adversarial Attacks on SDN-based Deep Learning IDS System[C]//Mobile and Wireless Technology 2018:International Conference on Mobile and Wireless Technology(ICMWT 2018).Springer,2019:181-191. [11]IBITOYE O,SHAFIQ O,MATRAWY A.Analyzing AdversarialAttacks Against Deep Learning for Intrusion Detection inIoT Networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6. [12]LI J,ZHOU L,LI H,et al.Dynamic Traffic Feature Camouflaging Via Generative Adversarial Networks[C]//2019 IEEE Conference on Communications and Network Security(CNS).IEEE,2019:268-276. [13]CHOUGULE A,AGRAWAL K,CHAMOLA V.Scan-gan:Generative Adversarial Network Based Synthetic Data Generation Technique for Controller Area Network[J].IEEE Internet of Things Magazine,2023,6(3):126-130. [14]ANANDE T J,AL-SAADI S,LEESON M S.Generative Adversarial Networks for Network Traffic Feature Generation[J].International Journal of Computers and Applications,2023,45(4):297-305. [15]HUI S,WANG H,WANG Z,et al.Knowledge Enhanced GAN forIoT Traffic Generation[C]//Proceedings of the ACM Web Conference 2022.2022:3336-3346. [16]HUANG Y,CHEN Y,ZHANG Y,et al.TFHM:A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks[C]//2022 7th IEEE International Conference on Data Science in Cyberspace(DSC).IEEE,2022:175-182. [17]LI J,ZHOU L,LI H X,et al.Network Traffic Feature Camouflage Technology Based on Generative Adversarial Networks [J].Computer Engineering,2019,45(12):119-126. [18]SIVANATHAN A,SHERRATT D,GHARAKHEILI H H,et al.Characterizing and Classifying IoT Traffic in Smart Cities and Campuses[C]//2017 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2017:559-564. [19]MIETTINEN M,MARCHAL S,HAFEEZ I,et al.IoT Sentinel:Automated Device-type Identification for Security Enforcement in IoT[C]//2017 IEEE 37th International Conference on Distributed Computing Systems(ICDCS).IEEE,2017:2177-2184. [20]LI J,WANG D,LI S,et al.Deep Learning Based Adaptive Sequential Data Augmentation Technique for the Optical Network Traffic Synthesis[J].Optics Express,2019,27(13):18831-18847. |
|
||