计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100137-10.doi: 10.11896/jsjkx.241100137
张帆1, 李昂1,2
ZHANG Fan1, LI Ang1,2
摘要: 传统的目标检测方法在处理复杂场景时存在局限性,尤其在夜间低光照和白天阴影环境中难以取得理想效果。现有多模态图像融合技术多偏重红外图像在低光照场景中的重要性,却忽视了白天复杂环境对红外与可见光融合的需求平衡。因此,针对全天候、多场景的目标检测需求,提出了一种基于特征图分类与生成对抗网络(Generative Adversarial Network,GAN)的多模态融合目标检测方法。与以往强调图像视觉质量的融合方法不同,该方法着眼于提升融合图像的目标检测性能。通过多尺度注意机制将特征图分类为显著性和细节特征图,并在交叉对抗训练网络中通过生成器及显著性、细节判别器优化融合效果,捕捉各模态的关键信息,以满足不同场景的检测需求。实验结果表明,所提出的方法在TNO,RoadScene和M3FD数据集上的表现优异,显著提升了多模态融合目标检测的性能。
中图分类号:
| [1]PARAMANANDHAM N,RAJENDIRAN K.Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications[J].Infrared Physics and Technology,2018,88:13-22. [2]GAO H B,CHENG B,WANG J Q,et al.Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment[J].IEEE Transactions on Industrial Informatics,2018,14(9):4224-4231. [3]ZHOU Z,WANG B,LI S,et al.Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J].Information Fusion,2016,30:15-26. [4]LI H,QI X,XIE W.Fast infrared and visible image fusion with structural decomposition[J].Knowledge-Based Systems,2020,204:106182. [5]MA J,ZHOU Y.Infrared and visible image fusion via gradientlet filter[J].Computer Vision and Image Understanding,2020,197/198:103016. [6]LI H,WU X J,KITTLER J.MDLatLRR:A novel decomposition method for infrared and visible image fusion[J].IEEE Transactions on Image Processing,2020,29:4733-4746. [7]CHEN J,LI X,LUO L,et al.Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J].Information Sciences,2020:508:64-78. [8]CVEJIC N,BULL D,CANAGARAJAH N.Region-Based Multimodal Image Fusion Using ICA Bases[J].IEEE Sensors Journal,2007,7(5):743-751. [9]LIU Y,CHEN X,WARD K R,et al.Image Fusion With Convolutional Sparse Representation[J].IEEE Signal Processing Letters,2016,23(12):1882-1886. [10]MA J,CHEN C,LI C,et al.Infrared and visible image fusion via gradient transfer and total variation minimization[J].Information Fusion,2016,31:100-109. [11]LI S,KANG X,FANG L,et al.Pixel-level image fusion:A survey of the state of the art[J].Information Fusion,2017,33:100-112. [12]LI H,WU X.DenseFuse:A Fusion Approach to Infrared andVisible Images[J].IEEE Transactions on Image Processing,2019,28(5):2614-2623. [13]LI H,WU J X,DURRANI T.NestFuse:An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9645-9656. [14]LI H,WU X J,KITTLER J.RFN-Nest:An end-to-end residual fusion network for infrared and visible images[J].Information Fusion,2021,73:72-86. [15]ZHANG Y,LIU Y,SUN P,et al.IFCNN:A general image fusion framework based on convolutional neural network[J].Information Fusion,2020,54:99-118. [16]TANG L,ZHANG H,XU H,et al.Rethinking the necessity of image fusion in high-level vision tasks:A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J].Information Fusion,2023,99:101870. [17]LI D Y,NIE R C,PAN L N,et al.UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance[J].Computer Science,2024,51(6A):230600170-5. [18]TANG L,XIANG X,ZHANG H,et al.DIVFusion:Darkness-free infrared and visible image fusion[J].Information Fusion,2023,91:477-493. [19]MA J,YU W,LIANG P,et al.FusionGAN:A generative adversarial network for infrared and visible image fusion[J].Information Fusion,2018,48:11-26. [20]MA J,XU H,JIANG J,et al.DDcGAN:A Dual-discriminator Conditional Generative Adversarial Network for Multi-resolution Image Fusion.[J].IEEE Transactions on Image Proces-sing,2020,29:4980-4995. [21]ZHANG G D,CHEN Z H,SHENG B.Infrared Small Target Detection Based on Dilated Convolutional Conditional GenerativeAdversarial Networks[J].Computer Science,2024,51(2):151-160. [22]MA J,ZHANG H,SHAO Z,et al.GANMcC:A Generative Adversarial Network With Multiclassification Constraints for Infrared and Visible Image Fusion[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-14. [23]TOET A.The TNO Multiband Image Data Collection[J].Data in Brief,2017,15:249-251. [24]XU H,MA J,JIANG J,et al.U2Fusion:A Unified Unsupervised Image Fusion Network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):502-518. [25]LIU J,FAN X,HUANG Z,et alTarget-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5802-5811. [26]LIU Y,JIN J,WANG Q,et al.Region level based multi-focus image fusion using quaternion wavelet and normalized cut[J].Signal Processing,2014,97:9-30. [27]TOET A.Image fusion by a ratio of low-pass pyramid[J].Pattern Recognition Letters,1989,9(4):245-253. [28]BHATNAGAR G,WU Q M J,LIU Z.Directive contrast based multimodal medical image fusion in NSCT domain[J].IEEE Transactions on Multimedia,2013,15(5):1014-1024. [29]SURYANARAYANA G,KONDAMURI R S,YANG J.Lear-ning infrared degradations for coherent visible image fusion in the undecimated dual-tree complex wavelet domain[J].Infrared Physics and Technology,2024:143:105596. [30]LIU Z,TSUKADA K,HANASAKI K,et al.Image fusion by using steerable pyramid[J].Pattern Recognition Letters,2001,22(9):929-939. [31]LI L,SHI Y,LV M,et al.Infrared and Visible Image Fusion via Sparse Representation and Guided Filtering in Laplacian Pyramid Domain[J].Remote Sensing,2024,16(20):3804. [32]XIANG T,YAN L,GAO R.A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain[J].Infrared Physics & Technology,2015,69:53-61. [33]YIGUO Y,DAN L,YANYAN L,et al.Multispectral and hyperspectral images fusion based on subspace representation and nonlocal low-rank regularization[J].International Journal of Remote Sensing,2024,45(9):2965-2984. [34]CHEN Y,ZHOU F C,DONG K.Dual distinguisher infrared and visible light image fusion with enhanced visual significance [J/OL].Journal of Beijing University of Aeronautics and Astronautics,1-12[2024-11-19].https://doi.org/10.13700/j.bh.1001-5965.2024.0072. [35]LIU C H,QI Y,DING W R.Infrared and visible image fusion method based on saliency detection in sparse domain[J].Infrared Physics & Technology,2017,83:94-102. [36]NAIDU V P S.Hybrid DDCT-PCA based multi sensor image fusion[J].Journal of Optics,2014,43:48-61. [37]PRABHAKAR K R,SRIKAR V S,BABU R V.Deepfuse:Adeep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:4714-4722. [38]SHI Y,GANG J,XI L,et al.TCPMFNet:An infrared and visible image fusion network with composite auto encoder and transformer-convolutional parallel mixed fusion strategy[J].Infrared Physics and Technology,2022,127:104405. [39]ZHANG H,XU H,XIAO Y,et al.Rethinking the image fusion:A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12797-12804. [40]MA J,TANG L,XU M,et al.STDFusionNet:An infrared and visible image fusion network based on salient target detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [41]WANG W,WEI C,YANG W,et al.Gladnet:Low-light en-hancement network with global awareness[C]//2018 13th IEEE International Conference on Automatic Face & Gesture recognition(FG 2018).IEEE,2018:751-755. [42]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014. [43]ZHANG Y,YU J,WANG Y,et al.Small object detection based on hierarchical attention mechanism and multi-scale separable detection[J].IET Image Processing,2023,17(14):3986-3999. [44]DENG Z,HU X,ZHU L,et al.R3net:Recurrent residual refinement network for saliency detection[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2018:684-690. [45]LI A,NI S,CHEN Y,et al.Cross-modal object detection viaUAV[J].IEEE Transactions on Vehicular Technology,2023,72(8):10894-10905. |
|
||