计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250200002-8.doi: 10.11896/jsjkx.250200002
戴梦轩1, 夏云霓1, 马勇2, 马堉银3, 董玉民4, 刘辉5, 陈鹏6, 孙晓宁4, 龙廷艳7
DAI Mengxuan1, XIA Yunni1, MA Yong2, MA Yuyin3, DONG Yumin4, LIU Hui5, CHEN Peng6, SUN Xiaoning4, LONG Tingyan7
摘要: 移动边缘计算作为一种创新性技术,通过在网络边缘部署计算资源,为用户提供低延迟的计算与存储服务。在该研究领域中,用户移动性始终是研究重点,现有工作主要聚焦于分析和利用用户与边缘服务器的移动轨迹,忽略用户兴趣点数据,且缺乏对迁移失败的有效处理,导致服务命中率低、迁移开销大。近期研究发现,除移动性信息外,用户的兴趣点信息也可以有效整合并加以利用。针对这一发现,文中提出了一种基于兴趣与移动感知的服务迁移路径选择方法(IMSPM)。该方法将轨迹预测模型与用户兴趣预测模型进行融合,从而实现目标服务器的优化选择以及可靠、低成本的服务迁移路径规划。实验结果表明,与仅依赖移动性信息的传统方法相比,IMSPM在服务命中率、服务迁移次数等多个性能指标上展现出一定优势。
中图分类号:
| [1]CONG P,ZHOU J,LI L,et al.A Survey of Hierarchical Energy Optimization for Mobile Edge Computing:A Perspective from End Devices to the Cloud[J].ACM Comput.Surv.,2020,53(2):38:1-38:44. [2]AHMED E,REHMANI M H.Mobile Edge Computing:Opportunities,solutions,and challenges[J].Future Generation Computer Systems,2017,70:59-63. [3]LIU F,TANG G,LI Y,et al.A Survey on Edge Computing Systems and Tools[J].Proceedings of the IEEE,2019,107(8):1537-1562. [4]MOURA J,HUTCHISON D.Game Theory for Multi-AccessEdge Computing:Survey,Use Cases,and Future Trends[J].IEEE Communications Surveys & Tutorials,2019,21(1):260-288. [5]REN J,ZHANG D,HE S,et al.A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms:Transparent Computing,Mobile Edge Computing,Fog Computing,and Cloudlet[J].ACM Comput.Surv.,2020,52(6):125:1-125:36. [6]VARGHESE B,WANG N,BARBHUIYA S,et al.Challengesand Opportunities in Edge Computing[C]//IEEE International Conference on Smart Cloud(SmartCloud 2016).New York:IEEE,2016:20-26. [7]MAO Y,YOU C,ZHANG J,et al.A Survey on Mobile Edge Computing:The Communication Perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358. [8]ZENG J,ZHAO Y,WANG Z,et al.LGSA:A next POI prediction method by using local and global interest with spatiotemporal awareness[J].Expert Systems with Applications,2023,227:120291. [9]OTTENWÄLDER B,KOLDEHOFE B,ROTHERMEL K,et al.MigCEP:operator migration for mobility driven distributed complex event processing[C]//Proceedings of the 7th ACM international conference on Distributed event-based systems.Arlington Texas USA:ACM,2013:183-194. [10]NADEMBEGA A,HAFID A S,BRISEBOIS R.Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE[C]//IEEE International Confe-rence on Communications(ICC 2016).Kuala Lumpur,Malaysia:IEEE,2016:1-6. [11]CAO B,YE H,LIU J,et al.SMART:Cost-Aware Service Migration Path Selection Based on Deep Reinforcement Learning[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(9):12421-12436. [12]SHARGHIVAND N,MASHAYEKHY L,MA W,et al.Time-Constrained Service Handoff for Mobile Edge Computing in 5G[J].IEEE Transactions on Services Computing,2022:1-13. [13]YUAN Q,LI J,ZHOU H,et al.A Joint Service Migration and Mobility Optimization Approach for Vehicular Edge Computing[J].IEEE Transactions on Vehicular Technology,2020,69(8):9041-9052. [14]CHEN X,BI Y,CHEN X,et al.Dynamic Service Migration and Request Routing for Microservice in Multicell Mobile-Edge Computing[J].IEEE Internet of Things Journal,2022,9(15):13126-13143. [15]LI X,CHEN S,ZHOU Y,et al.Intelligent Service Migration Based on Hidden State Inference for Mobile Edge Computing[J].IEEE Transactions on Cognitive Communications and Networking,2022,8(1):380-393. [16]HUI Y,SU Z,LUAN T H,et al.Reservation Service:Trusted Relay Selection for Edge Computing Services in Vehicular Networks[J].IEEE Journal on Selected Areas in Communications,2020,38(12):2734-2746. [17]PENG Q,XIA Y,WANG Y,et al.A Decentralized Reactive Approach to Online Task Offloading in Mobile Edge Computing Environments[M]//KAFEZA E,BENATALLAH B,MARTINELLI F,et al.Service-Oriented Computing.Cham:Springer International Publishing,2020:232-247. [18]WANG H,LI Y,ZHOU A,et al.Service migration in mobile edge computing:A deep reinforcement learning approach[J].International Journal of Communication Systems,2023,36(1):e4413. [19]ADDAD R A,DUTRA D L C,TALEB T,et al.AI-Based Network-Aware Service Function Chain Migration in 5G and Beyond Networks[J].IEEE Transactions on Network and Service Management,2022,19(1):472-484. [20]WANG H,LI Y,ZHOU A,et al.Service migration in mobileedge computing:A deep reinforcement learning approach[J].International Journal of Communication Systems,2023,36(1):e4413. [21]ZHANG C,ZHENG Z.Task migration for mobile edge computing using deep reinforcement learning[J].Future Generation Computer Systems,2019,96:111-118. [22]MA Y,DAI M,SHAO S,et al.A Performance and Reliability-Guaranteed Predictive Approach to Service Migration Path Selection in Mobile Computing[J].IEEE Internet of Things Journal,2023,10(20):17977-17987. [23]KANG W C,MCAULEY J.Self-Attentive Sequential Recom-mendation[C]//IEEE International Conference on Data Mining(ICDM 2018).Singapore:IEEE,2018:197-206. [24]LI H,CHENG Y,ZHOU C,et al.Minimizing End-to-End Delay:A Novel Routing Metric for Multi-Radio Wireless Mesh Networks[C]//IEEE INFOCOM 2009.Rio De Janeiro,Brazil:IEEE,2009:46-54. [25]LOH R C,SOH S,LAZARESCU M,et al.A greedy technique for finding the most reliable edge-disjoint-path-set in a network[C]//14th IEEE Pacific Rim International Symposium on Dependable Computing.2008:216-223. |
|
||