计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250200002-8.doi: 10.11896/jsjkx.250200002

• 计算机网络 • 上一篇    下一篇

边缘环境下基于兴趣和移动感知的服务迁移路径选择方法

戴梦轩1, 夏云霓1, 马勇2, 马堉银3, 董玉民4, 刘辉5, 陈鹏6, 孙晓宁4, 龙廷艳7   

  1. 1 重庆大学计算机学院 重庆 400030
    2 江西师范大学计算机信息工程学院 南昌 330022
    3 新疆大学软件学院 乌鲁木齐 830091
    4 重庆师范大学计算机与信息科学学院 重庆 401331
    5 北京理工大学计算机学院 北京 100081
    6 西华大学计算机与软件工程学院 成都 610039
    7 贵州大学计算机科学与技术学院 贵阳 550025
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 夏云霓(xiayunni@hotmail.com)
  • 作者简介:mengxuand@foxmail.com
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN202300533);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0782);黔科合基础-[2024]青年128, 重庆市自然科学基金创新发展联合基金重点项目(CSTB2023NSCQ-LZX0139);四川省自然基金(2024NSFTD0008);四川省自然科学基金创新研究群体项目(2024NSFTD0008)

Service Migration Path Selection Method Based on Interest and Mobility Perception in EdgeComputing Environment

DAI Mengxuan1, XIA Yunni1, MA Yong2, MA Yuyin3, DONG Yumin4, LIU Hui5, CHEN Peng6, SUN Xiaoning4, LONG Tingyan7   

  1. 1 College of Computer Science,Chongqing University,Chongqing 400030,China
    2 School of Computer and Information Engineering,Jiangxi Normal University,Nanchang 330022,China
    3 School of Software,Xinjiang University,Urumqi 830091,China
    4 College of Computer and Information Science,Chongqing Normal University,Chongqing 401331,China
    5 College of Computer Science,Beijing Institute of Technology,Beijing 100081,China
    6 School of Computer and Software Engineering,Xihua University,Chengdu 610039,China
    7 College of Computer Science and Technology,Guizhou University,GuiYang 550025,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300533),Nature Science Foundation Project of Chongqing Science and Technology Bureau(CSTB2023NSCQ-MSX0782),Basic Research Program for Youth Orientation of Guizhou Province under Grant[2024]128,Key Projects of Chongqing Natural Science Foundation Innovation Development Joint Fund(CSTB2023NSCQ-LZX0139) and Sichuan Provincial Natural Science Foundation(2024NSFTD0008).

摘要: 移动边缘计算作为一种创新性技术,通过在网络边缘部署计算资源,为用户提供低延迟的计算与存储服务。在该研究领域中,用户移动性始终是研究重点,现有工作主要聚焦于分析和利用用户与边缘服务器的移动轨迹,忽略用户兴趣点数据,且缺乏对迁移失败的有效处理,导致服务命中率低、迁移开销大。近期研究发现,除移动性信息外,用户的兴趣点信息也可以有效整合并加以利用。针对这一发现,文中提出了一种基于兴趣与移动感知的服务迁移路径选择方法(IMSPM)。该方法将轨迹预测模型与用户兴趣预测模型进行融合,从而实现目标服务器的优化选择以及可靠、低成本的服务迁移路径规划。实验结果表明,与仅依赖移动性信息的传统方法相比,IMSPM在服务命中率、服务迁移次数等多个性能指标上展现出一定优势。

关键词: 移动边缘计算, 轨迹预测, 兴趣点, 服务迁移, 迁移路径

Abstract: Mobile Edge Computing(MEC),as an innovative technology,deploys computing resources at the network edge to provide users with low-latency computing and storage services.In this research field,user mobility has consistently been a focal point,with existing work primarily focusing on analyzing and utilizing the movement trajectories between users and edge servers.However,such approaches often overlook users’ points of interest(POI) data and lack effective handling of migration failures,resulting in low service hit rates and high migration costs.Recent research has discovered that beyond mobility information,users’ points of interest data can also be effectively integrated and utilized.Addressing this finding,this paper proposes an Interest and Mobility-aware Service Path Migration(IMSPM) method.This approach fuses trajectory prediction models with user interest prediction models to achieve optimized target server selection and reliable,low-cost service migration path planning.Experimental results demonstrate that compared to traditional methods that rely solely on mobility information,IMSPM exhibits significant advantages in multiple performance metrics,including service hit rate and service migration frequency

Key words: Mobile edge computing, Trajectory prediction, Points of interest, Service migration, Migration path

中图分类号: 

  • TP393
[1]CONG P,ZHOU J,LI L,et al.A Survey of Hierarchical Energy Optimization for Mobile Edge Computing:A Perspective from End Devices to the Cloud[J].ACM Comput.Surv.,2020,53(2):38:1-38:44.
[2]AHMED E,REHMANI M H.Mobile Edge Computing:Opportunities,solutions,and challenges[J].Future Generation Computer Systems,2017,70:59-63.
[3]LIU F,TANG G,LI Y,et al.A Survey on Edge Computing Systems and Tools[J].Proceedings of the IEEE,2019,107(8):1537-1562.
[4]MOURA J,HUTCHISON D.Game Theory for Multi-AccessEdge Computing:Survey,Use Cases,and Future Trends[J].IEEE Communications Surveys & Tutorials,2019,21(1):260-288.
[5]REN J,ZHANG D,HE S,et al.A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms:Transparent Computing,Mobile Edge Computing,Fog Computing,and Cloudlet[J].ACM Comput.Surv.,2020,52(6):125:1-125:36.
[6]VARGHESE B,WANG N,BARBHUIYA S,et al.Challengesand Opportunities in Edge Computing[C]//IEEE International Conference on Smart Cloud(SmartCloud 2016).New York:IEEE,2016:20-26.
[7]MAO Y,YOU C,ZHANG J,et al.A Survey on Mobile Edge Computing:The Communication Perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.
[8]ZENG J,ZHAO Y,WANG Z,et al.LGSA:A next POI prediction method by using local and global interest with spatiotemporal awareness[J].Expert Systems with Applications,2023,227:120291.
[9]OTTENWÄLDER B,KOLDEHOFE B,ROTHERMEL K,et al.MigCEP:operator migration for mobility driven distributed complex event processing[C]//Proceedings of the 7th ACM international conference on Distributed event-based systems.Arlington Texas USA:ACM,2013:183-194.
[10]NADEMBEGA A,HAFID A S,BRISEBOIS R.Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE[C]//IEEE International Confe-rence on Communications(ICC 2016).Kuala Lumpur,Malaysia:IEEE,2016:1-6.
[11]CAO B,YE H,LIU J,et al.SMART:Cost-Aware Service Migration Path Selection Based on Deep Reinforcement Learning[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(9):12421-12436.
[12]SHARGHIVAND N,MASHAYEKHY L,MA W,et al.Time-Constrained Service Handoff for Mobile Edge Computing in 5G[J].IEEE Transactions on Services Computing,2022:1-13.
[13]YUAN Q,LI J,ZHOU H,et al.A Joint Service Migration and Mobility Optimization Approach for Vehicular Edge Computing[J].IEEE Transactions on Vehicular Technology,2020,69(8):9041-9052.
[14]CHEN X,BI Y,CHEN X,et al.Dynamic Service Migration and Request Routing for Microservice in Multicell Mobile-Edge Computing[J].IEEE Internet of Things Journal,2022,9(15):13126-13143.
[15]LI X,CHEN S,ZHOU Y,et al.Intelligent Service Migration Based on Hidden State Inference for Mobile Edge Computing[J].IEEE Transactions on Cognitive Communications and Networking,2022,8(1):380-393.
[16]HUI Y,SU Z,LUAN T H,et al.Reservation Service:Trusted Relay Selection for Edge Computing Services in Vehicular Networks[J].IEEE Journal on Selected Areas in Communications,2020,38(12):2734-2746.
[17]PENG Q,XIA Y,WANG Y,et al.A Decentralized Reactive Approach to Online Task Offloading in Mobile Edge Computing Environments[M]//KAFEZA E,BENATALLAH B,MARTINELLI F,et al.Service-Oriented Computing.Cham:Springer International Publishing,2020:232-247.
[18]WANG H,LI Y,ZHOU A,et al.Service migration in mobile edge computing:A deep reinforcement learning approach[J].International Journal of Communication Systems,2023,36(1):e4413.
[19]ADDAD R A,DUTRA D L C,TALEB T,et al.AI-Based Network-Aware Service Function Chain Migration in 5G and Beyond Networks[J].IEEE Transactions on Network and Service Management,2022,19(1):472-484.
[20]WANG H,LI Y,ZHOU A,et al.Service migration in mobileedge computing:A deep reinforcement learning approach[J].International Journal of Communication Systems,2023,36(1):e4413.
[21]ZHANG C,ZHENG Z.Task migration for mobile edge computing using deep reinforcement learning[J].Future Generation Computer Systems,2019,96:111-118.
[22]MA Y,DAI M,SHAO S,et al.A Performance and Reliability-Guaranteed Predictive Approach to Service Migration Path Selection in Mobile Computing[J].IEEE Internet of Things Journal,2023,10(20):17977-17987.
[23]KANG W C,MCAULEY J.Self-Attentive Sequential Recom-mendation[C]//IEEE International Conference on Data Mining(ICDM 2018).Singapore:IEEE,2018:197-206.
[24]LI H,CHENG Y,ZHOU C,et al.Minimizing End-to-End Delay:A Novel Routing Metric for Multi-Radio Wireless Mesh Networks[C]//IEEE INFOCOM 2009.Rio De Janeiro,Brazil:IEEE,2009:46-54.
[25]LOH R C,SOH S,LAZARESCU M,et al.A greedy technique for finding the most reliable edge-disjoint-path-set in a network[C]//14th IEEE Pacific Rim International Symposium on Dependable Computing.2008:216-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!