计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 169-179.doi: 10.11896/jsjkx.240600164
熊可钦1, 阮思捷1, 杨芊雨1, 徐常炜2, 袁汉宁1
XIONG Keqin1, RUAN Sijie1, YANG Qianyu1, XU Changwei2 , YUAN Hanning1
摘要: 地理信息是经济社会发展所需的基础数据,而兴趣点数据是其中一种常见且重要的数据类型。兴趣点数据的采集,传统上由地图厂商完成,存在成本高、空间覆盖不全、粒度不够细等问题,影响了下游应用的精准性。幸运的是,移动互联网的普及产生了大量移动性数据,其揭示了兴趣点的存在且具有推测地点类别的潜力。但是利用移动性数据推测地点类别因用户访问地点稀疏、移动上下文依赖关系复杂、用户的个体行为随机等问题面临挑战,现有工作无法较好地应对。因此,提出了一种基于群体投票的移动性数据驱动地点类别推测方法Milotic。该方法对地点类别的推测细化到每一条移动轨迹中,通过图模型建模了地点间复杂关系,通过签到嵌入和Bi-LSTM充分保留并融合了细粒度轨迹上下文信息,同时通过投票机制克服了个体行为的随机性。实验结果表明Milotic在两个真实移动性数据集上的加权F1值分别比最优基线提高了7.5%和13.3%。
中图分类号:
[1]WANG D H,LIU J J.Overall Technology for Dynamic Updating of the National Fundamental Geographic Information Database[J].Acta Geodaetica et Cartographica Sinica,2015,44(7):822. [2]SUN H,XU J,ZHENG K,et al.MFNP:A Meta-optimizedModel for Few-shot Next POI Recommendation[C]//IJCAI.2021:3017-3023. [3]ZHANG L,SUN Z,WU Z,et al.Next Point-of-Interest Recommendation with Inferring Multi-step Future Preferences[C]//IJCAI.2022:3751-3757. [4]GÖBEL F,KIEFER P.POITrack:improving map-based plan-ning with implicit POI tracking[C]//Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications.2019:1-9. [5]YUAN H,LI G,BAO Z.Route travel time estimation on a road network revisited:Heterogeneity,proximity,periodicity and dynamicity[J].Proceedings of the VLDB Endowment,2022,16(3):393-405. [6]YE T,ZHAO N,YANG X,et al.Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model[J].Science of the Total Environment,2019,658:936-946. [7]ZHAO Y,LI Q,ZHANG Y,et al.Improving the accuracy offine-grained population mapping using population-sensitive POIs[J].Remote Sensing,2019,11(21):2502. [8]WU S,YAN X,FAN X,et al.Multi-graph fusion networks for urban region embedding[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.Vienna,Austria:IJCAI,2022:2312-2318. [9]ZHANG M,LI T,LI Y,et al.Multi-view joint graph representa-tion learning for urban region embedding[C]//Proceedings of the Twenty-ninth International Conference on Artificial Intelligence.2021:4431-4437. [10]GUO B,WANG S,WANG H,et al.Towards equitable assignment:Data-driven delivery zone partition at last-mile logistics[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.Long Beach,CA,USA,2023:4078-4088. [11]RUAN S J,XIONG K Q,WANG S L,et al.A survey of urban geographic information inference driven by crowd-sourced spatio-temporal data[J].Acta Electronica Sinica,2023,51(8):2238-2259. [12]HASANUZZAMAN M,WAY A.Place-type detection in loca-tion-based social networks[C]//Proceedings of the 28th ACM Conference on Hypertext and Social Media.Prague,Czech Republic,2017:75-83. [13]ZHENG Y,ZHANG L,XIE X,et al.Mining interesting loca-tions and travel sequences from GPS trajectories[C]//Procee-dings of the 18th International Conference on World Wide Web.2009:791-800. [14]BING J,CHEN M,YANG M,et al.Pre-Trained semantic embeddings for POI categories based on multiple contexts[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(9):8893-8904. [15]PANG J,ZHANG Y.DeepCity:A feature learning frameworkfor mining location check-ins[C]//Proceedings of the Eleventh International Conference on Web and Social Media.Montréal,Québec,Canada,2017,11(1):652-655. [16]MENG K,LI H,WANG Z,et al.A deep multi-modal fusion approach for semantic place prediction in social media[C]//Proceedings of the Workshop on Multimodal Understanding of Social,Affective and Subjective Attributes.Mountain View,California,USA,2017:31-37. [17]ZHANG J,NIE L,WANG X,et al.Shorter-is-better:Venue cate-gory estimation from micro-video[C]//Proceedings of the 24th ACM international conference on Multimedia.Amsterdam,The Netherlands,2016:1415-1424. [18]LI Y,ZHAO X,ZHANG Z,et al.Annotating semantic tags of locations in location-based social networks[J].GeoInformatica,2020,24:133-152. [19]CHENG J,ZHANG X,LUO P,et al.An unsupervised approach for semantic place annotation of trajectories based on the prior probability[J].Information Sciences,2022,607:1311-1327. [20]CHEN M,ZHAO Y,LIU Y,et al.Modeling spatial trajectories with attribute representation learning[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(4):1902-1914. [21]LIU X,LIU Y,LI X.Exploring the context of locations for personalized location recommendations[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.New York,USA:AAAI,2016:1188-1194. [22]YANG D,QU B,YANG J,et al.Revisiting user mobility and social relationships in lbsns:a hypergraph embedding approach[C]//The World Wide Web Conference.San Francisco,CA,USA:Association for Computing Machinery,2019:2147-2157. [23]CHANG B,PARK Y,PARK D,et al.Content-aware hierarchical point-of-interest embedding model for successive poi recommendation[C]//Proceedings of the Twenty-seventh Interna-tional Joint Conference on Artificial Intelligence.Stockholm,Sweden,2018,20:3301-3307. [24]CHENG C,YANG H,LYU M R,et al.Where you like to go next:Successive point-of-interest recommendation[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.Beijing,China:AAAI,2013. [25]LONG J,CHEN T,NGUYEN Q V H,et al.Decentralized collaborative learning framework for next POI recommendation[J].ACM Transactions on Information Systems,2023,41(3):1-25. [26]LIU Q,WU S,WANG L,et al.Predicting the next location:A recurrent model with spatial and temporal contexts[C]//Proceedings of the Thirtieth AAAl Conference on Artificial Intelligence.Phoenix,Arizona,USA,2016. [27]WU Y,LI K,ZHAO G,et al.Personalized long-and short-term preference learning for next POI recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(4):1944-1957. [28]ZHOU Y,HUANG Y.Deepmove:Learning place representa-tions through large scale movement data[C]//2018 IEEE International Conference on Big Data(Big Data).Seattle,WA,USA,2018:2403-2412. [29]GUO Q,SUN Z,ZHANG J,et al.An attentional recurrent neural network for personalized next location recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2020:83-90. [30]ZHAO P,LUO A,LIU Y,et al.Where to go next:A spatio-temporal gated network for next poi recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(5):2512-2524. [31]YANG S,LIU J,ZHAO K.GETNext:trajectory flow map enhanced transformer for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.Madrid,Spain,2022:1144-1153. [32]KIPF T N,WELLING M.Semi-Supervised Learning WithGraph Learning-Convolutional Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:11305-11312. [33]MANOTUMRUKSA J,MACDONALD C,OUNIS I.A contextual attention recurrent architecture for context-aware venue recommendation[C]//The 41st international ACM SIGIR Conference on Research & Development in Information Retrieval.Ann Arbor,MI,USA:Association for Computing Machinery,2018:555-564. [34]YANG J,EICKHOFF C.Unsupervised learning of parsimonious general-purpose embeddings for user and location modeling[J].ACM Transactions on Information Systems,2018,36(3):1-33. [35]KAZEMI S M,GOEL R,EGHBALI S,et al.Time2vec:Lear-ning a vector representation of time[J].arXiv:1907.05321,2019. [36]KENTON J D M W C,TOUTANOVA L K.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:4171-4186. [37]YANG D,ZHANG D,ZHENG V W,et al.Modeling user activi-ty preference by leveraginguser spatial temporal characteristics in LBSNs[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,45(1):129-142. [38]KIM N,YOON Y.Effective urban region representation lear-ning using heterogeneous urban graph attention network(hugat)[J].arXiv:2202.09021,2022. |
|