计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250200066-6.doi: 10.11896/jsjkx.250200066

• 计算机图形学&多媒体 • 上一篇    下一篇

基于SSD网络模型重构的表情检测算法

陈平安1, 邓琦1,2   

  1. 1 湖北汽车工业学院电气与信息工程学院 湖北 十堰 442002
    2 圣心大学商业科技学院 美国 康涅狄格州 06825
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 邓琦(dq@huat.edu.cn)
  • 作者简介:wuju_an@qq.com
  • 基金资助:
    湖北省重点研发计划项目国际科技合作类(2023EHA018)

Expression Detection Algorithm Based on SSD Network Model Reconstruction

CHEN Ping’an1, DENG Qi1,2   

  1. 1 Electrical and Information Engineering College,Hubei University of Automotive Technology,Shiyan,Hubei 442002,China
    2 Jack Welch College of Business and Technology,Sacred Heart University,Fairfield,USA 06825
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Hubei Provincial Key R&D Program of International Science and Technology Cooperation Category(2023EHA018).

摘要: 人脸识别与表情检测是计算机视觉和深度学习领域的热门研究方向,广泛应用于各种场景。然而,传统的表情检测方法在非受限条件下的表现差,深度学习方法则面临特征区分度低和识别精度容易受到姿势和表情变化影响等问题。对此,提出了基于SSD的网络模型重构与中心损失优化算法(IML-SSD),以提升面部表情检测的准确性和鲁棒性。首先,提出了一种基于网络重构优化的SSD面部表情快速检测算法,通过重构SSD算法模型中的基础层和辅助层,提高了识别速度、准确率和鲁棒性。随后,结合中心损失函数对SSD算法进行了进一步优化,使得同一类别的表情特征更加聚合,不同类别的特征则更加分离,从而增强了面部表情特征的判别能力。测试结果表明,所提算法优于对比算法,且在数据集FERPlus上的mAP值提升了约6.5个百分点。

关键词: 表情检测, SSD重构, 深度神经网络

Abstract: Facial expression recognition and detection are prominent research areas in computer vision and deep learning,widely applied across various scenarios.However,traditional expression detection methods perform poorly under unconstrained conditions,while deep learning approaches face challenges such as low feature discriminability and susceptibility to posture and expression variations.To address these issues,this paper proposes an IML-SSD algorithm based on SSD network model reconstruction and center loss optimization to enhance the accuracy and robustness of facial expression detection.Firstly,this paper introduces a fast SSD-based facial expression detection algorithm optimized through network reconstruction.By restructuring the base and auxiliary layers of the SSD model,the algorithm achieves improved recognition speed,accuracy,and robustness.Subsequently,the SSD algorithm is further optimized by incorporating a center loss function,which enhances the aggregation of features within the same category while increasing separation between different categories,thereby strengthening the discriminative capability of facial expression features.Test results demonstrate that the proposed algorithm outperforms comparative methods,achieving approximately a 6.5 percentage points increase in mAP values on the FERPlus dataset.

Key words: Facial expression detection, SSD Refactoring, Deep neural network

中图分类号: 

  • TP183
[1]LI X,YANG M,DU Y T. Occlusion face recognition based on partition selection and gabor wavelet[J].Microelectronics & Computer,2023,40(5):39-46.
[2]ZHOU H,LIU J H,LIU Z W,et al.Rotate-and-render unsupervised photorealistic face rotation from single-view images[C]//Proceedings of International Conference on Computer Vision and Pattern Recognition.Amsterdam:Elsevier.2020.
[3]ZHANG Y S,NIE Z Y,SUI L L.Deep Learning-based Facial Recognition in Complex Mining Areas[J].Energy Science and Technology,2022,20(5):3-8.
[4]WEI Y,LIU M,WANG H,et al.Learning flow-based feature warping for face frontalization with illumination inconsistent supervision[C]//Proceedings of European Conference on Compu-ter Vision.Berlin:Springer,2020.
[5]ZHANG R R,MIN G,LUO T,et al.Face Recognition Algorithm Based on Deep Neural Networks Model Introducing Image Denoising Processing Mechanism[J].Digital Printing,2022(5):26-36.
[6]YAO H X,DENG W H,LIUH H,et al. An overview of research development of affective computing and understanding[J].Journal of image and graphics,2022,27(6):2008-2035.
[7]WANG K,PENG X J,YANG J F,et al.Suppressing Uncertainties for Large-Scale Facial Expression Recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020.
[8]ZHAO Z Q,LIU Q S,ZHOU F.Robust Lightweight Facial Expression Recognition Network with Label Distribution Training[C]//AAAI-21 Technical Tracks 4.2021.
[9]ZENG D,LIN Z,YAN X,et al.Face2exp:Combating data biases for facial expression recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:20291-20300.
[10]XIA M,ZHENG H,PENG H,et al.Enhanced multi-Scale Dynamic Facial Expression Recognition via Conditional Random Fields[J].The Visual Computer,2024,10:1-12.
[11]LI J, LIU Z,WANG Z,et al.FERmc:Facial expression recognition framework based on multi-branch fusion and depthwise separable convolution[J].Information Fusion,2025,124:103416-103416.
[12]JIAO Z,FU B,MAO Y,et al.Emotion Recognition MethodBased on Multiscale Attention Residual Network[J].Pattern Recognition and Image Analysis,2025,34(4):1000-1006.
[13]PENG C,SUN M,ZOU K,et al.Facial Expression Recognition-You Only Look Once-Neighborhood Coordinate Attention Mamba:Facial Expression Detection and Classification Based on Neighbor and Coordinates Attention Mechanism[J].Sensors,2024,24(21):912-6912.
[14]GOODFELLOW I J,ERHAN D,CARRIER P L,et al.Challenges in Representation Learning:A Report on Three Machine Learning Contests[J].Lecture Notes in Computer Science,2013,8228(1):125-132.
[15]LUCEY P,COHN J F,KANADE T,et al.The Extended Cohn-Kanade Dataset (RAF-DB ):A complete dataset for action unit and emotion-specified expression[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW 2010).2010.
[16]FARZANEH A H,QI X.Facial expression recognition in thewild via deep attentive center loss[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:2402-2411.
[17]ZHANG Y,WANG C,DENG W.Relative uncertainty learning for facial expression recognition[J].Advances in Neural Information Processing Systems,2021,34:17616-17627.
[18]SHE J,HU Y,SHI H,et al.Dive into ambiguity:Latent distrib ution mining and pairwise uncertainty estimation for facial expression recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:6248-6257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!