计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250400085-7.doi: 10.11896/jsjkx.250400085

• 信息安全 • 上一篇    下一篇

基于知识图谱嵌入的异构图欺诈用户检测

吕舒琦1, 张云峰2   

  1. 1 山东开放大学直属学院 济南 250000
    2 山东财经大学计算机科学与技术学院 济南 250000
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 张云峰(yfzhang@sdufe.edu.cn)
  • 作者简介:lvshuqi@sdou.edu.cn

Fraud User Detection Based on Heterogeneous Information Network with Knowledge Graph Eembedding

LYU Shuqi1, ZHANG Yunfeng2   

  1. 1 Directly Affiliated College,Shandong Open University,Jinan 250000,China
    2 School of Computer Science and Technology,Shandong University of Finance and Economics,Jinan 250000,China
  • Online:2025-11-15 Published:2025-11-10

摘要: 在信用支付服务场景中,欺诈用户的检测问题一直是一个研究热点。在深度学习方法中,通常使用异质信息网络来建模不同类型的节点对象及其交互关系,如用节点表示支付服务场景中的用户及商家,用边来表示节点之间的交互关系,以充分利用图的结构信息。然而,已经提出的很多模型在捕捉节点特征信息时,往往只关注元路径端节点而忽略了元路径中间节点的信息,这将导致信息丢失的问题。因此,提出了一种基于知识图谱嵌入的异构图欺诈用户检测模型。首先,引入知识图谱嵌入方法作为元路径内部聚合编码器,与只关注元路径上端节点的方法不同,元路径内部聚合编码器在获取节点信息时会同时关注元路径中间节点,以聚集整条元路径上的节点信息,能够有效解决信息丢失的问题。除此之外,设计了一个多层融合注意力机制,从节点以及路径层面模拟用户对属性和元路径的偏好,并在全局层面以融合的角度分析特征的重要程度。在不同类型数据集上的实验结果表明,与现有的多种欺诈检测方法相比,所提模型取得了相对较好的结果。

关键词: 欺诈检测, 图神经网络, 异构图, 知识图谱嵌入, 多层融合注意力机制

Abstract: In the scenario of credit payment service,the detection of fraudulent users has always been a research hotspot.In the deep learning method,heterogeneous information networks are usually used to model different types of node objects and their interaction relations.For example,nodes are used to represent users and merchants in the payment service scenario,and edges are used to represent the interaction relations between nodes,so as to make full use of the structural information of the graph.However,when capturing node feature information,many models that have been proposed often only focus on the end nodes of the meta path and ignore the information of the middle nodes of the meta path,which will lead to the problem of information loss.Therefore,this paper proposes a heterogeneous graph fraud user detection model based on knowledge graph embedding.Firstly,it introduces the knowledge graph embedding method as the meta path internal aggregation encoder.Different from the method of only focusing on the upper nodes of the meta path,the meta path internal aggregation coder will pay attention to the intermediate nodes of the meta path when obtaining the node information,so as to gather the node information on the whole meta path,which can effectively solve the problem of information loss.Moreover,it designs a multi-layer fusion attention mechanism to simulate users’ preferences for attributes and meta paths from the node and path levels,and analyzes the importance of features from the perspective of fusion at the global level.The experimental results on different types of data sets show that the proposed model achieves relatively good results compared with many existing fraud detection methods.

Key words: Fraud detection, Graph neural network, Heterogeneous graph, Knowledge map embedding, Multi-layer fusion attention mechanism

中图分类号: 

  • TP391
[1]HILAL W,ANDREW S,GADSDEN,et al.Financial Fraud:A Review of Anomaly Detection Techniques and Recent Advances[J].Expert Systems with Applications,2022,193:1.
[2]KAIDI L,TIANMENG Y,MIN Z,et al.SEFraud:Graph-based Self-Explainable Fraud Detection via Interpretative Mask Lear-ning[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD’24).Association for Computing Machinery,New York,NY,USA,2024:5329-5338.
[3]KOKKINAKI A I.On atypical database transactions:identification of probable frauds using machine learning for user profiling[C]//Proceedings 1997 IEEE Knowledge and Data Engineering Exchange Workshop.IEEE,1997:107-113.
[4]AGARWAL A,BARHAM P,BREVDO E,et al.Ten-sorflow:A system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.USENIX Association,2016.
[5]KHEMANI B,PATIL S,KOTECHA K T S.A review of graph neural networks:concepts,architectures,techniques,challenges,datasets,applications,and future directions[J].Journal of Big Data,2024,11(1).
[6]WANG X,BO D,SHI C,et al.A Survey on HeterogeneousGraph Embedding:Methods,Techniques,Applications and Sources[J].IEEE Transactions on Big Data,2023,9(2):415-436.
[7]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24.
[8]ZHANG M,HE T T,DONG M.Meta-path reasoning of knowledge graph for commonsense question answering[J].Frontiers of Computer Science,2024,18(1):181303.
[9]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144.
[10]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020.2020:2331-2341.
[11]ZHANG Y,KONG X,SHEN Z,et al.A survey on temporalknowledge graph embedding:Models and applications[J].Knowledge-Based Systems,2024,304.
[12]GUANGSHANG G.Review of Research on Neural NetworkCombined with Attention Mechanism in Recommendation System[J].Journal of Computer Engineering & Applications,2024,60(10).
[13]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032.
[14]HU B,ZHANG Z,SHI C,et al.Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:946-953.
[15]FU X,ZHANG J,MENG Z,et al.MAGNN:Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding[C]//Proceedings of the Web Conference 2020.2020:2331-2341.
[16]CHENG D,ZOU Y,XIANG S,et al.Graph neural networks for financial fraud detection:a review[J].Frontiers of Computers Science,2025,19(9):199609.
[17]KHODABANDEHLOU S,GOLPAYEGANI A H.FiFrauD:Unsupervised Financial Fraud Detection in Dynamic Graph Streams[J].ACM Transactions on Knowledge Discovery from Data,2024,18(5):29.
[18]WANG D,LIN J,CUI P,et al.A Semi-supervised Graph Attentive Network for Financial Fraud Detection[C]//ICDM.IEEE,2019:598-607.
[19]LIU Z,CHEN C,LI L,et al.GeniePath:Graph Neural Networks with Adaptive Receptive Paths[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018.
[20]LIU Z,CHEEN C,YANG X,et al.Heterogeneous Graph Neural Networks for Malicious Account Detection[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:2077-2085.
[21]WANG J,WEN R,WU C,et al.FdGars:Fraudster Detection via Graph Convolutional Networks in Online App Review System[C]//Companion The 2019 World Wide Web Conference.2019.
[22]LI A,QIN Z,LIU R,et al.Spam review detection with graphconvolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:2703-2711.
[23]ZHANGY,FAN Y,YE Y,et al.Key player identification in underground forums over attributed heterogeneous information network embedding framework[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:549-558.
[24]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370.
[25]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26.
[26]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014.
[27]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015.
[28]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011.
[29]YANG B,YI H W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575,2014.
[30]DETTMERS T,MINERXINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Thirty-second AAAI Conference on Artificial Intelligence.2018.
[31]VU T,NGUYEN T D,NGUYEN D Q,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:2180-2189.
[32]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019.
[33]ZHANG S,TAY Y,YAO L,et al.Quaternion knowledge graph embeddings[J].arXiv:1904.10281,2019.
[34]XU C,LI R.Relation embedding with dihedral group in knowledge graph[J].arXiv:1906.00687,2019.
[35]TROUILLON T,WELLBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Confe-rence on Machine Learning.PMLR,2016:2071-2080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!