计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 100-108.doi: 10.11896/jsjkx.240700112
王沛, 杨希洪, 管仁祥, 祝恩
WANG Pei, YANG Xihong, GUAN Renxiang, ZHU En
摘要: 近年来,图神经网络在处理复杂结构数据方面表现出色,被广泛应用于节点分类、图分类、链接预测等领域。深度图聚类结合了GNNs强大的表示能力与聚类算法的目标,从复杂的图结构数据中发现隐藏的簇结构。然而,现有的基于伪标签的图聚类算法在进行模型优化时常使用固定阈值,根据类别对样本进行筛选,以获得高置信度的样本数据来引导模型优化。但固定阈值的方法会导致类别不平衡问题,进而影响模型聚类的性能。为了解决上述问题,提出了一种基于动态阈值伪标签的深度图对比聚类算法。具体来说,采用两个不共享参数的多层感知机(MLP)结构捕捉图数据的潜在结构特征,并使用K-Means算法得到聚类结果。在此基础上,引入信赖强度来动态调整获得伪标签的阈值,在训练过程中动态调整每个类别中高置信度的样本数量,缓解类别不平衡的问题。此外,优化了对比学习策略,改进了样本对的构造方法,提高了模型的判别能力。实验结果表明,所提方法在6个基准数据集上均表现出色,在多个评估指标上超越了现有方法,展现了其有效性。
中图分类号:
[1]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [2]GUPTA A,MATTA P,PANT B.Graph neural network:Current state of Art,challenges and applications[J].Materials Today:Proceedings,2021,46:10927-10932. [3]TSITSULIN A,PALOWITCH J,PEROZZI B,et al.Graph clustering with graph neural networks[J].Journal of Machine Learning Research,2023,24(127):1-21. [4]TU W,GUAN R,ZHOU S,et al.Attribute-missing graph clustering network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:15392-15401. [5]DIKE H U,ZHOU Y,DEVEERASETTY K K,et al.Unsupervised learning based on artificial neural network:A review[C]//2018 IEEE International Conference on Cyborg and Bionic Systems(CBS).IEEE,2018:322-327. [6]LIU Y,TU W,ZHOU S,et al.Deep graph clustering via dual correlation reduction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:7603-7611. [7]LI J,GUAN R,HAN Y,et al.Superpixel-Based Dual-Neighborhood Contrastive Graph Autoencoder for Deep Subspace Clustering of Hyperspectral Image[C]//International Conference on Intelligent Computing.Springer,2024:181-192. [8]TSITSULIN A,PALOWITCH J,PEROZZI B,et al.Graph clustering with graph neural networks[J].Journal of Machine Learning Research,2023,24(127):1-21. [9]WANG C,PAN S,HU R,et al.Attributed graph clustering:a deep attentional embedding approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:3670-3676. [10]XIA W,WANG Q,GAO Q,et al.Self-consistent contrastive attributed graph clustering with pseudo-label prompt[J].IEEE Transactions on Multimedia,2022,25:6665-6677. [11]WANG X,WU Z,LIAN L,et al.Debiased learning from naturally imbalanced pseudo-labels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14647-14657. [12]ARAZO E,ORTEGO D,ALBERT P,et al.Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-8. [13]GUAN R,LI Z,LI X,et al.Pixel-superpixel contrastive learning and pseudo-label correction for hyperspectral image clustering[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2024:6795-6799. [14]YANG X,LIU Y,ZHOU S,et al.Cluster-guided ContrastiveGraph Clustering Network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:10834-10842. [15]XU D,CHENG W,LUO D,et al.Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed Graphs[C]//IJCAI.2019:3947-3953. [16]KIPF T N,WELLING M.Variational Graph Auto-Encoders[J].Stat,2016,1050:21. [17]WANG C,PAN S,HU R,et al.Attributed Graph Clustering:A Deep Attentional Embedding Approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:3670-3676. [18]VELICKOVIC P,FEDUS W,HAMILTON W L,et al.DeepGraph Infomax[J].Stat,2018,1050:21. [19]ZHU Y,XU Y,YU F,et al.Deep graph contrastive representation learning[J].arXiv:2006.04131,2020. [20]QIU J,CHEN Q,DONG Y,et al.Gcc:Graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:1150-1160. [21]WU Z,XIONG Y,YU S X,et al.Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3733-3742. [22]CHEN X,FAN H,GIRSHICK R,et al.Improved baselines with momentum contrastive learning[J].arXiv:2003.04297,2020. [23]YOU Y,CHEN T,SUI Y,et al.Graph contrastive learning with augmentations[J].Advances in Neural Information Processing Systems,2020,33:5812-5823. [24]GUAN R,LI Z,TU W,et al.Contrastive multiview subspace clustering of hyperspectral images based on graph convolutional networks[J].IEEE Transactions on Geoscience and Remote Sensing,2024,62:1-14. [25]YANG X,TAN C,LIU Y,et al.Convert:Contrastive graphclustering with reliable augmentation[C]//Proceedings of the 31st ACM International Conference on Multimedia.2023:319-327. [26]CUI G,ZHOU J,YANG C,et al.Adaptive graph encoder for attributed graph embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:976-985. [27]LIU Y,TU W,ZHOU S,et al.Deep Graph Clustering via Dual Correlation Reduction[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2022:7603-7611. [28]YANG X,LIU Y,ZHOU S,et al.Cluster-guided ContrastiveGraph Clustering Network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:10834-10842. [29]HASSANI K,KHASAHMADI A H.Contrastive Multi-view Representation Learning on Graphs[C]//International Confe-rence on Machine Learning.PMLR,2020:4116-4126. [30]XIE J,GIRSHICK R,FARHADI A.Unsupervised Deep Embedding for Clustering Analysis[C]//International Conference on Machine Learning.PMLR,2016:478-487. [31]YANG B,FU X,SIDIROPOULOS N D,et al.Towards K-means-friendly Spaces:Simultaneous Deep Learning and Clustering[C]//International Conference on Machine Learning.PMLR,2017:3861-3870. [32]WANG C,PAN S,LONG G,et al.Mgae:Marginalized Graph Autoencoder for Graph Clustering[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:889-898. [33]PAN S,HU R,FUNG S,et al.Learning Graph Embedding with Adversarial Training Methods[J].IEEE Transactions on Cybernetics,2019,50(6):2475-2487. [34]LI X,ZHANG H,ZHANG R.Adaptive Graph Auto-encoder for General Data Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(12):9725-9732. [35]ZHU Y,XU Y,YU F,et al.Graph Contrastive Learning with Adaptive Augmentation[C]//Proceedings of the Web Confe-rence 2021.2021:2069-2080. [36]JIN W,LIU X,ZHAO X,et al.Automated Self-SupervisedLearning for Graphs[J].arXiv:2106.05470,2021. [37]LI X,WU W,ZHANG B,et al.Multi-scale Graph Clustering Network[J].Information Sciences,2024,678:121023. |
|