计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 358-366.doi: 10.11896/jsjkx.241000083
梁建鹏1, 莫秀良1, 王鹏翔2, 王焕然3, 王春东4
LIANG Jianpeng1, MO Xiuliang1, WANG Pengxiang2, WANG Huanran3, WANG Chundong4
摘要: 当前基于图神经网络的恶意域名检测技术需要依赖领域专家进行元路径选择,才能将异构图转换为同构图进行直推式学习。这种方法难以利用图中丰富的拓扑信息,不具有良好的扩展性和泛化能力。对此,提出一种基于异构图归纳学习的恶意域名检测技术。首先,利用元路径生成算法构建以域名、主机和域名注册信息为节点的异质信息网络。其次,为克服直推式训练方式下的模型在真实网络中适用能力差的问题,使用归纳式图神经网络HeteroGAT来学习由训练样本构成的异构图的通用结构,并利用基于自编码器的域名特征表示来提升检测性能。最后,在公开数据集上将所提算法与机器学习和深度学习方法进行了对比。实验结果显示,所提出的方法取得了更优的性能指标,且在训练样本较少的条件下依旧能够有效处理数据不平衡问题,具有良好的鲁棒性。
中图分类号:
| [1]YADAV S,REDDY A K K,REDDY A L N,et al.Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J].IEEE/ACM Transactions on Networking,2012,20(5):1663-1677. [2]MANADHATA P,YADAV S,RAO P,et al.Detecting mali-cious domains via graph inference[C]//Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop.2014:59-60. [3]KHALIL I,YU T,GUAN B.Discovering malicious domainsthrough passive DNS data graph analysis[C]//Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security.2016:663-674. [4]SUN X,TONG M,YANG J,et al.{HinDom}:A robust malicious domain detection system based on heterogeneous information network with transductive classification[C]//22nd International Symposium on Research in Attacks,Intrusions and Defenses(RAID 2019).2019:399-412. [5]SUN X,WANG Z,YANG J,et al.Deepdom:Malicious domain detection with scalable and heterogeneous graph convolutional networks[J].Computers & Security,2020,99:102057. [6]YUN S,JEONG M,YOO S,et al.Graph Transformer Net-works:Learning meta-path graphs to improve GNNs[J].Neural Networks,2022,153:104-119. [7]BILGE L,SEN S,BALZAROTTI D,et al.Exposure:A passive dns analysis service to detect and report malicious domains[J].ACM Transactions on Information and System Security,2014,16(4):1-28. [8]PALANIAPPAN G,SANGEETHA S,RAJENDRAN B,et al.Malicious domain detection using machine learning on domain name features,host-based features and web-based features[J].Procedia Computer Science,2020,171:654-661. [9]LIU Z,ZENG Y,ZHANG P,et al.An imbalanced malicious do-mains detection method based on passive DNS traffic analysis[J].Security and Communication Networks,2018,2018(1):6510381. [10]PARK K H,SONG H M,DO YOO J,et al.Unsupervised malicious domain detection with less labeling effort[J].Computers &Security,2022,116:102662. [11]REN F,JIANG Z,WANG X,et al.A DGA domain names detection modeling method based on integrating an attention mechanism and deep neural network[J].Cybersecurity,2020,3(1):4. [12]WEI J X,LONG C,FU H,et al.Malicious domain name detection method based on enhanced embedded feature hypergraph learning[J].Journal of Computer Research and Development,2024,61(9):2334-2346. [13]YUAN J T,LIU Y P,YU L.A novel approach for maliciousURL detection based on the joint model[J].Security and Communication Networks,2021,2021(1):4917016. [14]LEI K,FU Q,NI J,et al.Detecting malicious domains with behavioral modeling and graph embedding[C]//IEEE 39th International Conference on Distributed Computing Systems(ICDCS 2019).IEEE,2019:601-611. [15]LI Y,LUO X,WANG L,et al.DyDom:Detecting malicious domains with spatial-temporal analysis on dynamic graphs[C]//2021 IEEE 23rd Int Conf on High Performance Computing & Communications;7th Int Conf on Data Science & Systems;19th Int Conf on Smart City;7th Int Conf on Dependability in Sensor,Cloud & Big Data Systems & Application(HPCC/DSS/SmartCity/DependSys).IEEE,2021:283-290. [16]ZHANG Z,ZHANG S F,YANG W,et al.Malicious DomainName Detection Method Based on Graph Contrastive Learning[J].Ruan Jian Xue Bao/Journal of Software,2024,35(10):4837-4858. [17]WANG Q,DONG C,JIAN S,et al.HANDOM:Heterogeneous attention network model for malicious domain detection[J].Computers & Security,2023,125:103059. [18]NG A.Sparse autoencoder[J].CS294A Lecture Notes,2011,72(2011):1-19. [19]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [20]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//ICLR 2018.2018. [21]YAO Y,FAN Z S,WANG Q,et al.Malicious Domain Detection Method Based on Multivariate Time-Series Features[J].Netinfo Security,2023,23(11):1-8. [22]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. |
|
||