计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 202-211.doi: 10.11896/jsjkx.240400048
何立仁1, 彭博2, 池明旻1
HE Liren1, PENG Bo2, CHI Mingmin1
摘要: 无监督异常检测因只需要正常样本进行训练而被广泛应用于工业质检等领域。直接将现有的单类别异常检测方法应用到多类别异常检测中会导致性能显著下降,其中基于知识蒸馏的异常检测方法将预训练的教师模型关于正常样本的特征知识蒸馏到学生模型中,然而它们在多类别异常检测中存在无法保证学生模型只学习到正常样本知识的问题。文中提出一种基于反向知识蒸馏框架的无监督多类别异常检测方法(Prototype based Reverse Distillation,PRD ),其通过Multi-class Normal Prototype模块和Sparse Prototype Recall训练策略来学习教师模型关于多类别正常样本特征的 Prototype,并以此来过滤学生模型的输入特征,从而确保学生模型只学习到教师模型关于正常样本的特征知识。PRD在多种工业异常检测数据集上性能均超越了现有的SOTA方法,定性、定量和消融实验验证了PRD整体框架和内部模块的有效性。
中图分类号:
[1]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Mvte-cad-a comprehensive real-world dataset for unsupervised ano-maly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9592-9600. [2]ZOU Y,JEONG J,PEMULA L,et al.Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]//European Conference on Computer Vision.Springer,2022:392-408. [3]FERNANDO T,GAMMULLE H,DENMAN S,et al.Deeplearning for medical anomaly detection-a survey[J].ACM Computing Surveys(CSUR),2021,54(7):1-37. [4]DEFARD T,SETKOV A,LOESCH A,et al.Padim:a patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition.Springer,2021:475-489. [5]GUDOVSKIY D,ISHIZAKA S,KOZUKA K.Cflow-ad:Real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:98-107. [6]LEI J,HU X,WANG Y,et al.Pyramidflow:High-resolution defect contrastive localization using pyramid normalizing flow[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:14143-14152. [7]RIPPEL O,MERTENS P,MERHOF D.Modeling the distribution of normal data in pre-trained deep features for anomaly detection[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:6726-6733. [8]ROTH K,PEMULA L,ZEPEDA J,et al.Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14318-14328. [9]YAN X,ZHANG H,XU X,et al.Learning semantic contextfrom normal samples for unsupervised anomaly detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence:Vol.35.2021:3110-3118. [10]YAO X,LI R,QIAN Z,et al.Focus the discrepancy:Intra-and inter-correlation learning for image anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6803-6813. [11]YOU Z,YANG K,LUO W,et al.Adtr:Anomaly detectiontransformer with feature reconstruction[C]//International Conference on Neural Information Processing.Springer,2022:298-310. [12]ZAVRTANIK V,KRISTAN M,SKOCˇAJ D.Draem-a discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8330-8339. [13]ZHANG H,WANG Z,WU Z,et al.Diffusionad:Denoising diffusion for anomaly detection[J].arXiv:2303.08730,2023. [14]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Unin-formed students:Student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4183-4192. [15]DENG H,LI X.Anomaly detection via reverse distillation from one-class embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9737-9746. [16]SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14902-14912. [17]TIEN T D,NGUYEN A T,TRAN N H,et al.Revisiting reverse distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:24511-24520. [18]YOU Z,CUI L,SHEN Y,et al.A unified model for multi-class anomaly detection[J].Advances in Neural Information Proces-sing Systems,2022,35:4571-4584. [19]ZHAO Y.Omnial:A unified cnn framework for unsupervisedanomaly localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:3924-3933. [20]MASOUDNIA S,EBRAHIMPOUR R.Mixture of experts:a li-terature survey[J].Artificial Intelligence Review,2014,42:275-293. [21]RUDOLPH M,WANDT B,ROSENHAHN B.Same same butdiffernet:Semi-supervised defect detection with normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:1907-1916. [22]RUDOLPH M,WEHRBEIN T,ROSENHAHN B,et al.Fully convolutional cross-scale-flows for image-based defect detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:1088-1097. [23]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [24]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851. [25]GU Z,LIU L,CHEN X,et al.Remembering normality:Memory-guided knowledge distillation for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:16401-16409. [26]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [27]ZAGORUYKO S,KOMODAKIS N.Wide residual networks[J].arXiv:1605.07146,2016. [28]TAN M,LE Q.Efficientnet:Rethinking model scaling for con-volutional neural networks[C]//International Conference on Machine Learning.PMLR,2019:6105-6114. [29]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into highquality object detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162. [30]LIU Z,ZHOU Y,XU Y,et al.Simplenet:A simple network for image anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20402-20411. [31]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. |
|