计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 118-128.doi: 10.11896/jsjkx.240400033
郭翾1, 侯锦霖1, 王文俊1, 焦鹏飞2
GUO Xuan1, HOU Jinlin1, WANG Wenjun1, JIAO Pengfei2
摘要: 动态网络链路预测是理解和分析动态网络的核心问题之一。针对链路预测面临的捕获复杂网络结构和真实演化规律等困难的问题,提出了一种融合图神经网络和神经常微分方程的自适应网络动力学建模方法——双层活跃度约束神经常微分方程模型DANOM。DANOM融合节点的重要性和相对位置信息,增强了网络结构的表征;通过节点活跃度约束下的神经常微分方程单元强化了演化规律的学习过程;并在节点活跃度和节点表示的重构损失优化下,挖掘到网络的有效信息。DANOM在多个真实数据集上的多种下游任务中均达到了最优效果,其中在单步链路预测任务中AUC与AP最高分别提升14%和9.7%,在快照缺失情况下的链路预测任务中AUC与AP分别平均仅降低0.43%和0.03%,在用户缝合实验中AUC与AP最高分别提升20.6%和24.4%。
中图分类号:
[1]CAO Z,FAN Z,WANG Q,et al.Link Prediction AlgorithmBased on Denoising Autoencoder in Complex Networks[J].Journal of Chinese Computer Systems,2023,44(3):665-672. [2]CAO Y,DONG Y H,WU S Q,et al.Advances in Dynamic Network Representation Learning Research [J].Acta Electronica Sinica,2020,48(10):2047-2059. [3]QIN M,YEUNG D Y.Temporal Link Prediction:A UnifiedFramework,Taxonomy,and Review [J].ACM Computing Surveys,2023,56(4):1-40. [4]ZHANG W,LAI X,WANG J.Social Link Inference via Multiview Matching Network from Spatio-Temporal Trajectories [J].IEEE Transactions on Neural Networks and Learning Systems,2020,34(4):1720-1731. [5]PARK N,LIU F,MEHTA P,et al.Evokg:Jointly Modeling Event Time and Network Structure for Reasoning over Temporal Knowledge Graphs [C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining.2022:794-803. [6]KING I J,HUANG H H.Euler:Detecting Network LateralMovement via Scalable Temporal Link Prediction [J].ACM Transactions on Privacy and Security,2023,26(3):1-36. [7]QIN M,ZHANG C,BAI B,et al.High-Quality Temporal Link Prediction for Weighted Dynamic Graphs via Inductive Embedding Aggregation [J].IEEE Transactions on Knowledge and Data Engineering,2023,35(9):9378-9393. [8]GOYAL P,CHHETRI S R,CANEDO A.Dyngraph2vec:Capturing Network Dynamics Using Dynamic Graph Representation Learning [J].Knowledge-Based Systems,2020,187:104816. [9]MIN S,GAO Z,PENG J,et al.STGSN-A Spatial-TemporalGraph Neural Network Framework for Time-Evolving Social Networks [J].Knowledge-Based Systems,2021,214:106746. [10]CHEN R T,RUBANOVA Y,BETTENCOURT J,et al.Neural Ordinary Differential Equations [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:6572-6583. [11]THOMAS N K,MAX W.Semi-Supervised Classification withGraph Convolutional Networks [C]//Proceedings of the 5th International Conference on Learning Representations.2017:1-10. [12]GOYAL P,KAMRA N,HE X,et al.DynGEM:Deep Embedding Method for Dynamic Graphs [C]//IJCAI International Workshop on Representation Learning for Graphs.2018:1-8. [13]GAO C,ZHU J,ZHANG F,et al.A Novel RepresentationLearning for Dynamic Graphs Based on Graph Convolutional Networks [J].IEEE Transactions on Cybernetics,2022,53(6):3599-3612. [14]PAREJA A,DOMENICONI G,CHEN J,et al.Evolvegcn:Evolving Graph Convolutional Networks for Dynamic Graphs [C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.2020:5363-5370. [15]YOU J,DU T,LESKOVEC J.ROLAND:Graph LearningFramework for Dynamic Graphs [C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2358-2366. [16]LEI K,QIN M,BAI B,et al.GCN-GAN:A Non-Linear Temporal Link Prediction Model for Weighted Dynamic Networks [C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications.2019:388-396. [17]YANG M,LIU J,CHEN L,et al.An Advanced Deep Generative Framework for Temporal Link Prediction in Dynamic Networks [J].IEEE Transactions on Cybernetics,2019,50(12):4946-4957. [18]SANKAR A,WU Y,GOU L,et al.Dysat:Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks [C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:519-527. [19]ZANG C,WANG F.Neural Dynamics on Complex Networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2020:892-902. [20]JIN D,HEIMANN M,ROSSI R A,et al.Node2bits:Compact Time-and Attribute-Aware Node Representations for User Stitching [C]//Proceedings of the 29th Joint European Confe-rence on Machine Learning and Knowledge Discovery in Databa-ses.2019:483-506. [21]CALVO M,MONTIJANO J I,RANDEZ L.A Fifth-Order Interpolant for the Dormand and Prince Runge-Kutta Method [J].Journal of Computational and Applied Mathematics,1990,29(1):91-100. [22]PÓSFAI M,BARABASI A L.Network Science [M].Cam-bridge,UK:Cambridge University Press,2016:1-57. [23]GAO J,RIBEIRO B.On the Equivalence between Temporal and Static Equivariant Graph Representations [C]//Proceedings of the 39th International Conference on Machine Learning.PMLR,2022:7052-7076. |
|