计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 232-239.doi: 10.11896/jsjkx.240500069
王凤玲1, 魏爱敏2, 庞雄文3, 李智1, 谢景明4
WANG Fengling1, WEI Aimin2, PANG Xiongwen3, LI Zhi1, XIE Jingming4
摘要: 视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。
中图分类号:
[1]HUANG Z,HUANG A,HU X,et al.Scale-Adaptive FeatureAggregation for Efficient Space-Time Video Super-Resolution[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:4228-4239. [2]ZHU Y,LI G.A Lightweight Recurrent Grouping AttentionNetwork for Video Super-Resolution[J].Sensors,2023,23(20):8574. [3]CHEN Y H,CHEN S C,LIN Y Y,et al.MoTIF:Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:23131-23141. [4]TUO Z,YANG H,FU J,et al.Learning data-driven vector-quantized degradation model for animation video super-resolution[C]//Proceedings of the IEEE/CVF International Confe-rence on Computer Vision.2023:13179-13189. [5]WANG X,CHAN K C K,YU K,et al.Edvr:Video restoration with enhanced deformable convolutional networks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [6]CHAN K C K,WANG X,YU K,et al.Basicvsr:The search for essential components in video super-resolution and beyond[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4947-4956. [7]ISOBE T,JIA X,GU S,et al.Video super-resolution with recurrent structure-detail network[C]//European Conference on Computer Vision.Cham:Springer,2020:645-660. [8]CHAN K C K,ZHOU S,XU X,et al.Basicvsr++:Improving video super-resolution with enhanced propagation and alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5972-5981. [9]TIAN Y,ZHANG Y,FU Y,et al.Tdan:Temporally-deformable alignment network for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:3360-3369. [10]KIM S Y,LIM J,NA T,et al.3dsrnet:Video super-resolution using 3d convolutional neural networks[J].arXiv:1812.09079,2018. [11]LIN J,HUANG Y,WANG L,et al. FDAN:Flow-guided de-formable alignment network for video super-resolution[J].ar-Xiv:2105.05640,2021. [12]ROTA C,BUZZELLI M,VAN DE WEIJER J.Enhancing Perceptual Quality in Video Super-Resolution through Temporally-Consistent Detail Synthesis using Diffusion Models[J].arXiv:2311.15908,2023. [13]XU K,YU Z,WANG X,et al.An Implicit Alignment for Video Super-Resolution[J].arXiv:2305.00163,2023. [14]LIU M,JIN S,YAO C,et al.Temporal Consistency Learning of Inter-Frames for Video Super-Resolution[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,33(4):1507-1520. [15]PRIESSNER M,GABORIAU D C A,SHERIDAN A,et al.Content-aware frame interpolation(CAFI):Deep Learning-based temporal super-resolution for fast bioimaging[J].Nature Methods,2024,21(2):322-330. [16]LI A,ZHANG L,LIU Y,et al.Feature Modulation Transfor-mer:Cross-Refinement of Global Representation via High-Frequency Prior for Image Super-Resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:12514-12524. [17]YIN Z,LIU M,LI X,et al.MetaF2N:Blind Image Super-Resolution by Learning Efficient Model Adaptation from Faces[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:13033-13044 [18]WEI P,SUN Y,GUO X,et al.Towards Real-World Burst Image Super-Resolution:Benchmark and Method[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:13233-13242. [19]WANG X,YU K,WU S,et al.Esrgan:Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops. [20]LIANG J,FAN Y,XIANG X,et al.Recurrent video restoration transformer with guided deformable attention[J].Advances in Neural Information Processing Systems,2022,35:378-393. [21]SHI S,GU J,XIE L,et al.Rethinking alignment in video super-resolution transformers[J].Advances in Neural Information Processing Systems,2022,35:36081-36093. [22]SHI W,CABALLERO J,HUSAZR F,et al.Real-time singleimage and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1874-1883. [23]CHARBONNIER P,BLANC-FERAUD L,AUBERT G,et al.Two deterministic half-quadratic regularization algorithms for computed imaging[C]//Proceedings of 1st International Confe-rence on Image Processing.IEEE,1994:168-172. [24]XUE T,CHEN B,WU J,et al.Video enhancement with task-oriented flow[J].International Journal of Computer Vision,2019,127:1106-1125. [25]NAH S,BAIK S,HONG S,et al.Ntire 2019 challenge on video deblurring and super-resolution:Dataset and study[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [26]LIU C,SUN D.On Bayesian adaptive video super resolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,36(2):346-360. [27]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [28]RANJAN A,BLACK M J.Optical flow estimation using a spatial pyramid network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4161-4170. [29]HARIS M,SHAKHNAROVICH G,UKITA N.Recurrentback-projection network for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3897-3906. [30]LIU C,YANG H,FU J,et al.Learning trajectory-aware transformer for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5687-5696. [31]QING T,YING X,SHA Z,et al.Video Super-Resolution with Pyramid Flow-Guided Deformable Alignment Network[C]//2023 3rd International Conference on Electrical Engineering and Mechatronics Technology.IEEE,2023:758-764. [32]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [33]ZHONG Z,CAO M,JI X,et al.Blur Interpolation Transformer for Real-World Motion from Blur[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5713-5723. [34]YUE H,CAO C,LIAO L,et al.RViDeformer:Efficient Raw Video Denoising Transformer with a Larger Benchmark Dataset[J].arXiv:2305.00767,2023. |
|