计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 363-373.doi: 10.11896/jsjkx.250500051

• 信息安全 • 上一篇    下一篇

基于运动角度的视频帧删除检测算法及其证据效力规范

王康庆1, 夏立款2, 李硕3   

  1. 1 中国政法大学刑事司法学院 北京 100088
    2 国家法官学院 北京 100070
    3 中国人民公安大学 北京 100088
  • 收稿日期:2025-05-14 修回日期:2025-07-09 出版日期:2025-08-15 发布日期:2025-08-08
  • 通讯作者: 夏立款(lkx419521@163.com)
  • 作者简介:(cu212034@cupl.edu.cn)
  • 基金资助:
    中央高校基本科研业务费专项资金(24CXTD02);国家社科基金重点项目(22AFX009);中国政法大学校级项目(23624199)

Motion-angle-based Video Frame Deletion Detection Algorithm and Its Evidentiary Validity Standards

WANG Kangqing1, XIA Likuan2, LI Shuo3   

  1. 1 School of Criminal Justice,China University of Political Science and Law,Beijing 100088,China
    2 National Judges College,Beijing 100070,China
    3 People's Public Security University of China,Beijing 100088,China
  • Received:2025-05-14 Revised:2025-07-09 Online:2025-08-15 Published:2025-08-08
  • About author:WANG Kangqing,born in 1989,Ph.D,lecturer,is a member of CCF( No.Z3557M).His main research interests include information network security and digital law.
    XIA Likuan,born in 1991,Ph.D,lectu-rer.His main research interests include criminal trial and criminal evidence.
  • Supported by:
    Special Fund for Basic Scientific Research Operating Expenses of Central Universities(24CXTD02), Key Project of the National Social Science Fundation of China(22AFX009) and University-Level Project of China University of Political Science and Law(23624199).

摘要: 近年来视频恶意篡改行为屡见不鲜,已对电子证据的真实性与可靠性提出严峻挑战。其中,视频帧删除篡改行为可以掩盖事实真相,对视频类电子证据的破坏尤为严重。因此,帧删除检测问题受到越多越多的关注。目前,主流帧删除检测方法主要依赖帧删除行为在时域所产生的内容连续性衰减来甄别篡改视频。然而视频的时域信息较为复杂,通过时域内容连续性衰减来捕捉帧删除痕迹的方法并不稳定。针对此问题,以视频中运动目标的运动角度为研究对象,建立了一阶马尔可夫模型,推导出频域马尔可夫连续性衰减痕迹;随后基于频域马尔可夫连续性衰减痕迹,提出了一种基于时频分析技术的视频帧删除检测算法。实验结果表明:相较于时域连续性衰减痕迹,基于频域连续性衰减痕迹的视频帧删除检测算法具有更加优越的取证性能。在此基础之上,从证据合法性、证据真实性以及证据关联性等维度构建的法律规范框架,为数字时代电子证据规则的完善提供了理论参考,实现了技术正义与程序正义的双重目标。

关键词: 帧删除检测, 运动角度, 马尔可夫模型, 连续性衰减痕迹, 时频分析, 证据效力

Abstract: In recent years,malicious video tampering has become increasingly prevalent,posing severe challenges to the authenti-city and reliability of electronic evidence.Among such tampering methods,video frame deletion,which can obscure factual truth,proves particularly destructive to video-based electronic evidence.Consequently,frame deletion detection has attracted growing research attention.Current mainstream detection methods primarily rely on identifying content continuity degradation in the temporal domain caused by frame deletion.However,the complexity of temporal information in videos makes such temporal continuity-based detection approaches unstable.To address this issue,this paper focuses on motion patterns of objects in videos.By establi-shing a first-order Markov model,it derives frequency-domain Markov continuity decay traces.Subsequently,based on these frequency-domain traces,this paper proposes a video frame deletion detection algorithm utilizing time-frequency analysis techniques.Experimental results demonstrate that compared with temporal continuity decay traces,the frequency-domain continuity decay-based detection algorithm exhibits superior forensic performance.Building upon this technical advancement,this research further constructs a legal framework from perspectives of evidence legality,evidence authenticity,and evidence relevance,providing theoretical references for improving electronic evidence regulations in the digital era.This dual approach achieves both technological justice and procedural justice objectives.

Key words: Frame deletion detection, Passive evidence collection, Markov model, Continuous attenuation traces, Time-frequency analysis, Evidentiary validit

中图分类号: 

  • TP391.41
[1]SINGH R D,AGGARWAL N.Video Content Authentication Techniques:A Comprehensive Surve[J].Multimedia Systems,2018,2(24):211-240.
[2]WANG W,FARID H.Exposing Digital Forgeries in Video by Detecting Double Quantization[C]//ACM Workshop Mutimedia Security.New York:ACM,2009:9-48.
[3]SU Y,JING Z,JIE L.Exposing Digital Video Forgery by Detecting Motion-Compensated Edge Artifact[C]//Computational Intelligence and Software Engineering.2010:37-47.
[4]VAZQUEZPADIN D,FONTANI M,BIANCHI T.Detection of video double encoding with GOP size estimation[C]//IEEE International Workshop on Information Forensics and Security.2012:151-156.
[5]FENG C,XU Z,JIA S,et al.Motion-Adaptive Frame Deletion Detection for Digital Video Forensics[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,27(12):2543-2554.
[6]SHANABLEH T.Detection of Frame Deletion for Digital Video Forensics[J].Digital Investigation,2013,4(10):350-360.
[7]ZHANG Z,HOU J,LI Z.Efficient Video Frame Insertion and Deletion Detection Based on Inconsistency of Correlations between Local Binary Pattern Coded Frames[J].Security and Communication Networks,2017,8(2):311-320.
[8]ZHAO Y,PANG T,LIANG X,et al.Frame Deletion Detection for Static-Background Video Based on Multi-scale Mutual Information[C]//Cloud Computing and Security:Third International Conference.2017:371-384.
[9]ZHANG Z Z,HOU J J,LI Z H,et al.Video frame-interpolation and frame-deletion forgery detection based on MSSIM quotient consistency[J].Journal of Beijing University of Posts and Telecommunications,2015,38(4):84-88.
[10]LIU Y,HUANG T.Exposing Video Inter-Frame Forgery byZernike Opponent Chromaticity Moments and Coarseness Analysis[J].Multimedia Systems,2017,2(23):223-238.
[11]CONOTTER V,O'BRIEN J F,FARID H.Exposing Digital Forgeries in Ballistic Motion [J].IEEE Transactions on Information Forensics and Security,2012,7(1):283-296.
[12]CHAO J,JIANG X,SUN T.A Novel Video Inter-frame Forgery Model Detection Scheme Based on Optical Flow Consistency [C]//International Workshop on Digital Watermarking.Berlin:Springer,2012:267-281.
[13]WANG W,JIANG X,WANG S.Identifying Video ForgeryProcess Using Optical Flow [C]//International Workshop on Digital Watermarking.Berlin:Springer, 2014:244-257.
[14]LI S,HUO H T.Frame Deletion Detection Based on OpticalFlow Orientation Variation[J].IEEE Access,2021,99:37196-37209.
[15]BAO Q,WANG Y,HUA H,et al.An anti-forensics video forgery detection method based on noise transfer matrix analysis[J].Sensors,2024,24(16):5341.
[16]GOWDA R,PAWAR D.Deep learning-based forgery identification and localization in videos[J].Signal,Image and Video Processing,2023,17:2185-2192.
[17]LI S,HUO H T.Continuity-Attenuation Captured Network for Frame Deletion Detection[J].Signal,Image and Video Process,2024,18(4):3285-3297.
[18]FENG C,WU D,WU T,et al.An MSDCNN-LSTM Framework for Video Frame Deletion Forensics[J].Multimedia Tools and Applications,2024,83:72745-72764.
[19]YI D H.Time Series Analysis:Forecasting and Control [J].Application of Statistics and Management,2000(3):51.
[20]HU Y,SALMAN A.Construction and testing of video tamper detection database[J].Journal of South China University of Technology(Natural Science Edition),2017,45:57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!