计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 104-114.doi: 10.11896/jsjkx.241100070
李顺勇1,2, 郑孟蛟1, 李嘉茗1, 赵兴旺3,4
LI Shunyong1,2, ZHENG Mengjiao1, LI Jiaming1, ZHAO Xingwang3,4
摘要: 现有的大多数多视图聚类算法仅依赖于视图间的低阶相似性信息,未能有效地捕捉数据中的高阶结构特性,且对多视图数据的多样性特征关注不足,导致聚类结果的准确性和鲁棒性受限。针对以上问题,提出了一种基于多视图多样性学习的联合谱嵌入聚类算法——JSEC。首先通过视图多样性学习,保留数据间的多样特征,从而有效去除了视图中的噪声;然后提出了一种挖掘视图高阶信息的方法,使得视图的多样性特征尽可能靠近混合相似图,从而实现不同视图信息的高效整合,实现视图间的多样性和补充性融合;最后在谱嵌入模块将视图的多样性特征矩阵融合为联合谱嵌入矩阵,通过谱聚类实现图聚类。另外,设计了一种交替迭代的方法,用于优化目标函数。在与目前最新的多视图聚类算法的对比中,JSEC算法在5个中小规模的真实数据集的3个指标上均展现出优越的性能,同时在2个大规模数据集上也有优异的表现,相比次优算法,ARI指标在不同规模数据集上分别有1.27%和2.57%的提升,从而在理论和实验上验证了所提算法的稳健性。
中图分类号:
| [1]ZHANG P F,LI T R,WANG G Q,et al.Multi-source information fusion based on rough set theory:A review[J].Information Fusion,2021,4(68):85-117. [2]ZHAO X Y,YAN W Q,REN J L,et al.Graph-filtering andhigh-order bipartite graph based multiview graph clustering[J].Digital Signal Processing,2023,133:103847. [3]ZHANG D P,HUANG H N,ZHAO Q B,et al.Generalized latent multi-view clustering with tensorized bipartite graph[J].Neural Networks,2024,175:106282. [4]WANG S W,LIU X W,LIU L,et al.Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2022:9776-9785. [5]LIU S S,LIN L.Adaptive Weighted Multi-View Clustering[C]//ACM Conference on Health,Inference,and Learning.PMLR,2023:19-36. [6]GUO W,CHEN H J,LEUNG M F.Tensor-Based AdaptiveConsensus Graph Learning for Multi-View Clustering[J].IEEE Transactions on Consumer Electronics,2024,70(2):4767-4784. [7]XU C,TAO D C,XU C.A Survey on Multi-view Learning[J].Neural Computing and Applications,2012,13:2031-2038. [8]ZONG L L.Research on Multi-view Clustering[D].Dalian:Dalian University of Technology,2017. [9]XU J,REN Y Z,LI G F,et al.Deep embedded multi-view clustering with collaborative training[J].Information Sciences,2021,573:279-290. [10]ZHEN L L,HU P,PENG X,et al.Deep Multimodal Transfer Learning for Cross-Modal Retrieval[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(2):798-810. [11]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations.2017:1-10. [12]LIN Z P,KANG Z.Graph Filter-based Multi-view AttributedGraph Clustering[C]//International Joint Conference on Artificial Intelligence(IJCAI).AAAI,2021:2723-2129. [13]ZHOU B,LIU W L,SHEN M Z,et al.Adaptive graph fusionlearning for multi-view spectral clustering[J].Pattern Recognition Letters,2023,176:102-108. [14]CAI B,LU G F,LIANG Y,et al.Aligned multi-view clustering for unmapped data via weighted tensor nuclear norm and adaptive graph learning[J].Neurocomputing,2024,597:128016. [15]XIE D Y,GAO Q X,ZHAO Y G,et al.Consistent graph lear-ning for multi-view spectral clustering[J].Pattern Recognition,2024,154:110598. [16]ZHAO X W,WANG S J,LIU X L,et al.Joint Spectral Embedding Multi-view Clustering Algorithm Based on Bipartite Graphs[J].Journal of Software,2024,35(9):4408-4424. [17]WANG H,YANG Y,LIU B.GMC:graph-based multi-viewclustering[J].IEEE Transactions on Knowledge and Data Engineering,2020,32(6):1116-1129. [18]ZONG L L,ZHANG X C,LIU X Y,et al.Weighted multi-view spectral clustering based on spectral perturbation[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.AAAI,2018:4621-4628. [19]CAI S T,CHEN X J,CHEN L T,et al.Stratified Pseudo-label Based Image Clustering[J].Computer Science,2023,50(6):225-235. [20]LIU P Y,HU J,WANG H J.Multi-view Attributed GraphClustering Based on Contrast Consensus Graph Learning[J].Computer Science,2024,51(11):73-80. [21]LIU Z H,SONG P.Deep low-rank tensor embedding for multi-view subspace clustering[J].Expert Systems With Applications,2024,237:121518. [22]MEI Y Y,REN Z W,WU B,et al.Multi-order similarity learning for multi-view spectral clustering[J].Pattern Recognition,2023,137:109264. [23]LI L,LI Z N,ZHENG J,et al.Unsupervised dimensionality reduction by jointing dynamic hypergraph and low-rank embedding for classification and clustering[J].Expert Systems with Applications,2022,208:118225. [24]XIN H N,HAO Z Z,SUN Z S,et al.Multi-view and Multi-order Graph Clustering via Constrained l1,2-norm[J].Information Fusion,2024,111:102483. [25]YOU Y N,TANG C,LIU X W,et al.High-order graph fusion for multi-view clustering[J].Scientia Sinica(Informationis),2024,54(9):2098-2115. [26]XIA R K,PAN Y,DU L,et al.Robust Multi-View SpectralClustering via Low-Rank and Sparse Decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.AAAI,2014:2149-2155. [27]BOJCHEVSKI A,MATKOVIC Y,GUNNEMANN S.Robustspectral clustering for noisy data:Modeling sparse corruptions improves latent embeddings[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2017:737-746. [28]LIANG Y W,HUANG D,WANG C D,et al.Multi-view graph learning by joint modeling of consistency and inconsistency[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(2):2848-2862. [29]PAN E L,KANG Z.High-order multi-view clustering for gene-ric data[J].Information Fusion,2023,100:101947. [30]FAN K.On a theorem of Weyl concerning eigenvalues of linear transformations:II[C]//Proceedings of the National Academy of Sciences of the United States of America.1950:31-35. [31]HUANG L,CHAO H Y,WANG C D.Multi-view intact space clustering[J].Pattern Recognition,2019,86:344-353. [32]NG A Y,JORDAN M,WEISS Y.On spectral clustering:Analysis and an algorithm[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems:Natural and Synthetic.MIT,2001:849-856. [33]LIU L,CHEN P,LUO G C,et al Scalable multi-view clustering with graph filtering[J].Neural Computing and Applications,2022,34(19):16213-16221. [34]LIU J Y,LIU X W,YANG Y X,et al.Multiview Subspace Clustering via Co-Training Robust Data Representation[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33:5177-5189. [35]LIU J Y,LIU X W,YANG Y X,et al.One-pass Multi-view Clustering for Large-scale Data[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2021:12324-12333. [36]HUANG S D,WU H J,REN Y Z,et al.Multi-view SubspaceClustering on Topological Manifold[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems.2024. [37]NIE F P,TIAN L,LI X L.Multiview clustering via adaptively weighted Procrustes[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2018:2022-2030. [38]ZHAN K,NIE F P,WANG J,et al.Multiview consensus graph clustering[J].IEEE Transactions on Image Processing,2019,28(3):1261-1270. [39]SUN M J,ZHANG P,WANG S W,et al.Scalable Multi-view Subspace Clustering with Unified Anchors[C]//Proceedings of the 29th ACM International Conference on Multimedia.ACM,2021:3528-3536. [40]HUANG S D,TSANG I W,XU Z L,et al.Measuring Diversity in Graph Learning:A Unified Framework for Structured Multi-View Clustering[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(12):5869-5883. |
|
||