计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 135-142.doi: 10.11896/j.issn.1002-137X.2019.05.021
张力生1, 张悦1, 雷大江2
ZHANG Li-sheng1, ZHANG Yue1, LEI Da-jiang2,
摘要: 在软件产品线的领域工程开发中,特征模型被广泛用于捕获和组织领域的可复用需求。目前,构建特征模型大多依赖于建模人员的分析,而随着领域需求的日益复杂,构建满足需求的特征模型不仅会增加建模人员的工作量,还会使特征模型的正确性降低。为解决不同特征模型之间建模词汇不统一的问题,提出一种分析特征语义并为语义定义术语的方法。为有效地重构特征模型,提出一种采用描述逻辑语言定义半自动化的重构方法,该重构方法可以推理模型的一致性。基于两个特征模型实例对提出的方法进行验证,实验结果表明该方法可以重构特征模型,并且可以检验重构的特征模型的一致性。
中图分类号:
[1]IRSHAD M,PETERSEN K,POULDING S.A Systematic Lite-rature Review of Software Requirements Reuse Approaches[J].Information & Software Technology,2018,93:223-245. [2]KARLSSON E A.Software reuse:a holistic approach[M].John Wiley & Sons,Inc.1995:129-144. [3]TANHAEI M,HABIBI J,MIRIAN-HOSSEINABADI S H.A Feature Model Based Framework for Refactoring Software Product Line Architecture[J].Journal of Computer Science and Technology,2016,31(5):951-986. [4]MEGHA,GOEL S,KAUR K.Analyzing inconsistencies in software product lines using an ontological rule-based approach[J].Journal of Systems & Software,2017,137:605-617. [5]ZHANG W,MEI H.Feature-oriented software reuse technology-state of the art[J].Chinese Science Bull,2014,59(11):21-42.(in Chinese)张伟,梅宏.面向特征的软件复用技术——发展与现状[J].科学通报,2014,59(1):21-42. [6]DAVIS A M.The Design of a Family of Application-Oriented Requirements Languages[J].Computer,1982,15(5):21-28. [7]KANG K C,COHEN S G,HESS J A,et al.Feature-oriented domain analysis (foda) feasibility study[J].Georgetown University,1990,4(4):206-207. [8]ACHER M,BAUDRY B,NASR S B.Breathing ontologicalknowledge into feature model synthesis:an empirical study[J].Empirical Software Engineering,2016,21(4):1794-1841. [9]MORITANI B I,LEE J.An approach for managing a distributed feature model to evolve self-adaptive dynamic software product lines[C]∥International Systems and Software Product Line Conference.2017:107-110. [10]TANHAEI M,HABIBI J,MIRIAN-HOSSEINABADI S H.Automating Feature Model Refactoring:A Model Transformation Approach[J].Information & Software Technology,2016,80(C):138-157. [11]NIE K M,ZHANG L.A Software product line domain requirement model construction method based on model difference and model composition[J].Chinese Journal of Computers,2014,37(3):539-550.(in Chinese)聂坤明,张莉.基于模型对比和组合的软件产品线领域需求建模[J].计算机学报,2014,37(3):539-550. [12]SHEN G H,ZHANG W,HUANG Z Q,et al.Description-logic-based feature modeling and verification[J].Journal of Computer Research and Development,2013,50(7):1501-1512.(in Chinese)沈国华,张伟,黄志球,等.基于描述逻辑的特征语义建模及验证[J].计算机研究与发展,2013,50(7):1501-1512. [13]BÜRDEK J,KEHRER T,LOCHAUM,et al.Reasoning aboutproduct-line evolution using complex feature model differences[J].Automated Software Engineering,2016,23(4):687-733. [14]YI L,ZHAO H Y,ZHANG W,et al.Research on the merging of feature models[J].Chinese Journal of Computers,2013,36(1):1-9.(in Chinese)易立,赵海燕,张伟,等.特征模型融合研究[J].计算机学报,2013,36(1):1-9[15]USMAN M,IQBAL M Z,KHAN M U.A Product-line Model-driven Engineering Approach for Generating Feature-based Mobile Applications[J].Journal of Systems & Software,2016,123:1-32. [16]BAADER F,CALVANESE D,MCGUINNESS D L,et al.The Description Logic Handbook:Theory,Implementation and Applications[J].Kybemetes,2003,32(9-10):43-95. [17]CALVANESE D.Unrestricted and Finite Model Reasoning inClass-Based Representation Formalisms[J].AI Communications,1996,9(4):225-226. [18]ARENAS M,BOTOEVA E,CALVANESE D,et al.Knowledge base exchange:The case of OWL 2 QL[J].Artificial Intelligence,2016,238:11-62. [19]LIAN X L,ZHANG L.Multi-Objective Optimization Algorithm for Feature Selection in Software Product Lines[J].Journal of Sofeware,2017,28(10):2548-2563.(in Chinese)连小利,张莉.面向软件产品线中特征选择的多目标优化算法[J].软件学报,2017,28(10):2548-2563. [20]BATORY D,BENAVIDES D,RUIZCORTES A.Automatedanalysis of feature models:challenges ahead[J].Communications of the ACM,2006,49(12):45-47. |
[1] | 曹晓雯, 梁美玉, 鲁康康. 基于细粒度语义推理的跨媒体双路对抗哈希学习模型 Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model 计算机科学, 2022, 49(9): 123-131. https://doi.org/10.11896/jsjkx.220600011 |
[2] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[3] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[4] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[5] | 姜胜腾, 张亦弛, 罗鹏, 刘月玲, 曹阔, 赵海涛, 魏急波. 语义通信系统的性能度量指标分析 Analysis of Performance Metrics of Semantic Communication Systems 计算机科学, 2022, 49(7): 236-241. https://doi.org/10.11896/jsjkx.211200071 |
[6] | 黄璞, 杜旭然, 沈阳阳, 杨章静. 基于局部正则二次线性重构表示的人脸识别 Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation 计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018 |
[7] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[8] | 董丹丹, 宋康. RIS辅助双向物联网通信系统性能分析 Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System 计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064 |
[9] | 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇. 深度卷积神经网络图像实例分割方法研究进展 Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network 计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038 |
[10] | 韩红旗, 冉亚鑫, 张运良, 桂婕, 高雄, 易梦琳. 基于共同子空间分类学习的跨媒体检索研究 Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning 计算机科学, 2022, 49(5): 33-42. https://doi.org/10.11896/jsjkx.210200157 |
[11] | 邓维斌, 朱坤, 李云波, 胡峰. FMNN:融合多神经网络的文本分类模型 FMNN:Text Classification Model Fused with Multiple Neural Networks 计算机科学, 2022, 49(3): 281-287. https://doi.org/10.11896/jsjkx.210200090 |
[12] | 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松. 基于交互注意力图卷积网络的方面情感分类 Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification 计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180 |
[13] | 邵海琳, 季怡, 刘纯平, 徐云龙. 基于增强特征金字塔网络的场景文本检测算法 Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network 计算机科学, 2022, 49(2): 248-255. https://doi.org/10.11896/jsjkx.201100072 |
[14] | 方仲礼, 王喆, 迟子秋. 面向多标签小样本学习的双流重构网络 Dual-stream Reconstruction Network for Multi-label and Few-shot Learning 计算机科学, 2022, 49(1): 212-218. https://doi.org/10.11896/jsjkx.201100143 |
[15] | 范红杰, 李雪冬, 叶松涛. 面向电子病历语义解析的疾病辅助诊断方法 Aided Disease Diagnosis Method for EMR Semantic Analysis 计算机科学, 2022, 49(1): 153-158. https://doi.org/10.11896/jsjkx.201100125 |
|