计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 135-142.doi: 10.11896/j.issn.1002-137X.2019.05.021

• 软件与数据库技术 • 上一篇    下一篇

基于语义的特征模型重构方法

张力生1, 张悦1, 雷大江2   

  1. (重庆邮电大学软件工程学院 重庆400065)1
    (重庆邮电大学计算机科学与技术学院 重庆400065)2
  • 收稿日期:2018-04-12 修回日期:2018-07-20 发布日期:2019-05-15
  • 作者简介:张力生(1965-),男,硕士,教授,CCF会员,主要研究方向为软件工程、需求建模、领域建模和软件复用,E-mali:zhangls@cqupt.edu.cn;张 悦(1993-),女,硕士生,主要研究方向为软件工程、语义网和描述逻辑,E-mail:S161201004@stu.cqupt.edu.cn(通信作者);雷大江(1979-),男,博士,副教授,主要研究方向为智能计算、机器学习和数据挖掘等。
  • 基金资助:
    重庆市前沿与应用基础研究计划一般项目(cstc2014jcyjA40049)资助。

Feature Model Refactoring Method Based on Semantics

ZHANG Li-sheng1, ZHANG Yue1, LEI Da-jiang2,   

  1. (College of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)1
    (College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)2
  • Received:2018-04-12 Revised:2018-07-20 Published:2019-05-15

摘要: 在软件产品线的领域工程开发中,特征模型被广泛用于捕获和组织领域的可复用需求。目前,构建特征模型大多依赖于建模人员的分析,而随着领域需求的日益复杂,构建满足需求的特征模型不仅会增加建模人员的工作量,还会使特征模型的正确性降低。为解决不同特征模型之间建模词汇不统一的问题,提出一种分析特征语义并为语义定义术语的方法。为有效地重构特征模型,提出一种采用描述逻辑语言定义半自动化的重构方法,该重构方法可以推理模型的一致性。基于两个特征模型实例对提出的方法进行验证,实验结果表明该方法可以重构特征模型,并且可以检验重构的特征模型的一致性。

关键词: 领域工程, 描述逻辑, 特征模型, 语义, 重构

Abstract: In the domain engineering of software product lines development,feature model is widely adopted to capture and organize the reusable requirements.Currently,the construction of feature model relies on the modeler’s analysis.With the increasing complexity of domain requirements,building a feature model that satisfies the requirements not only increases the workload of the modeler,but also reduces the accuracy of the feature model.A method for analyzing the semantics and defining semantic terms was proposed to solve the problem of inconsistent modeling vocabulary between different feature models in this paper.To refactor the feature model effectively,a semi-automated refactoring method was defined by using Description Logic.The consistency of the model can be also inferred by this method.The proposed method is verified based on two feature models,and the result shows that the method can refactor the feature model as well as verify the consistence the refactored feature model.

Key words: Description logic, Domain engineering, Feature model, Refactoring, Semantics

中图分类号: 

  • TP311
[1]IRSHAD M,PETERSEN K,POULDING S.A Systematic Lite-rature Review of Software Requirements Reuse Approaches[J].Information & Software Technology,2018,93:223-245.
[2]KARLSSON E A.Software reuse:a holistic approach[M].John Wiley & Sons,Inc.1995:129-144.
[3]TANHAEI M,HABIBI J,MIRIAN-HOSSEINABADI S H.A Feature Model Based Framework for Refactoring Software Product Line Architecture[J].Journal of Computer Science and Technology,2016,31(5):951-986.
[4]MEGHA,GOEL S,KAUR K.Analyzing inconsistencies in software product lines using an ontological rule-based approach[J].Journal of Systems & Software,2017,137:605-617.
[5]ZHANG W,MEI H.Feature-oriented software reuse technology-state of the art[J].Chinese Science Bull,2014,59(11):21-42.(in Chinese)张伟,梅宏.面向特征的软件复用技术——发展与现状[J].科学通报,2014,59(1):21-42.
[6]DAVIS A M.The Design of a Family of Application-Oriented Requirements Languages[J].Computer,1982,15(5):21-28.
[7]KANG K C,COHEN S G,HESS J A,et al.Feature-oriented domain analysis (foda) feasibility study[J].Georgetown University,1990,4(4):206-207.
[8]ACHER M,BAUDRY B,NASR S B.Breathing ontologicalknowledge into feature model synthesis:an empirical study[J].Empirical Software Engineering,2016,21(4):1794-1841.
[9]MORITANI B I,LEE J.An approach for managing a distributed feature model to evolve self-adaptive dynamic software product lines[C]∥International Systems and Software Product Line Conference.2017:107-110.
[10]TANHAEI M,HABIBI J,MIRIAN-HOSSEINABADI S H.Automating Feature Model Refactoring:A Model Transformation Approach[J].Information & Software Technology,2016,80(C):138-157.
[11]NIE K M,ZHANG L.A Software product line domain requirement model construction method based on model difference and model composition[J].Chinese Journal of Computers,2014,37(3):539-550.(in Chinese)聂坤明,张莉.基于模型对比和组合的软件产品线领域需求建模[J].计算机学报,2014,37(3):539-550.
[12]SHEN G H,ZHANG W,HUANG Z Q,et al.Description-logic-based feature modeling and verification[J].Journal of Computer Research and Development,2013,50(7):1501-1512.(in Chinese)沈国华,张伟,黄志球,等.基于描述逻辑的特征语义建模及验证[J].计算机研究与发展,2013,50(7):1501-1512.
[13]BÜRDEK J,KEHRER T,LOCHAUM,et al.Reasoning aboutproduct-line evolution using complex feature model differences[J].Automated Software Engineering,2016,23(4):687-733.
[14]YI L,ZHAO H Y,ZHANG W,et al.Research on the merging of feature models[J].Chinese Journal of Computers,2013,36(1):1-9.(in Chinese)易立,赵海燕,张伟,等.特征模型融合研究[J].计算机学报,2013,36(1):1-9[15]USMAN M,IQBAL M Z,KHAN M U.A Product-line Model-driven Engineering Approach for Generating Feature-based Mobile Applications[J].Journal of Systems & Software,2016,123:1-32.
[16]BAADER F,CALVANESE D,MCGUINNESS D L,et al.The Description Logic Handbook:Theory,Implementation and Applications[J].Kybemetes,2003,32(9-10):43-95.
[17]CALVANESE D.Unrestricted and Finite Model Reasoning inClass-Based Representation Formalisms[J].AI Communications,1996,9(4):225-226.
[18]ARENAS M,BOTOEVA E,CALVANESE D,et al.Knowledge base exchange:The case of OWL 2 QL[J].Artificial Intelligence,2016,238:11-62.
[19]LIAN X L,ZHANG L.Multi-Objective Optimization Algorithm for Feature Selection in Software Product Lines[J].Journal of Sofeware,2017,28(10):2548-2563.(in Chinese)连小利,张莉.面向软件产品线中特征选择的多目标优化算法[J].软件学报,2017,28(10):2548-2563.
[20]BATORY D,BENAVIDES D,RUIZCORTES A.Automatedanalysis of feature models:challenges ahead[J].Communications of the ACM,2006,49(12):45-47.
[1] 曹晓雯, 梁美玉, 鲁康康.
基于细粒度语义推理的跨媒体双路对抗哈希学习模型
Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model
计算机科学, 2022, 49(9): 123-131. https://doi.org/10.11896/jsjkx.220600011
[2] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[3] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[4] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[5] 姜胜腾, 张亦弛, 罗鹏, 刘月玲, 曹阔, 赵海涛, 魏急波.
语义通信系统的性能度量指标分析
Analysis of Performance Metrics of Semantic Communication Systems
计算机科学, 2022, 49(7): 236-241. https://doi.org/10.11896/jsjkx.211200071
[6] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[7] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[8] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[9] 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇.
深度卷积神经网络图像实例分割方法研究进展
Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network
计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038
[10] 韩红旗, 冉亚鑫, 张运良, 桂婕, 高雄, 易梦琳.
基于共同子空间分类学习的跨媒体检索研究
Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning
计算机科学, 2022, 49(5): 33-42. https://doi.org/10.11896/jsjkx.210200157
[11] 邓维斌, 朱坤, 李云波, 胡峰.
FMNN:融合多神经网络的文本分类模型
FMNN:Text Classification Model Fused with Multiple Neural Networks
计算机科学, 2022, 49(3): 281-287. https://doi.org/10.11896/jsjkx.210200090
[12] 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松.
基于交互注意力图卷积网络的方面情感分类
Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification
计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180
[13] 邵海琳, 季怡, 刘纯平, 徐云龙.
基于增强特征金字塔网络的场景文本检测算法
Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network
计算机科学, 2022, 49(2): 248-255. https://doi.org/10.11896/jsjkx.201100072
[14] 方仲礼, 王喆, 迟子秋.
面向多标签小样本学习的双流重构网络
Dual-stream Reconstruction Network for Multi-label and Few-shot Learning
计算机科学, 2022, 49(1): 212-218. https://doi.org/10.11896/jsjkx.201100143
[15] 范红杰, 李雪冬, 叶松涛.
面向电子病历语义解析的疾病辅助诊断方法
Aided Disease Diagnosis Method for EMR Semantic Analysis
计算机科学, 2022, 49(1): 153-158. https://doi.org/10.11896/jsjkx.201100125
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!