计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 158-164.doi: 10.11896/jsjkx.210500013

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于注意力机制和门控网络相结合的混合推荐系统

郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩   

  1. 新疆大学软件学院 乌鲁木齐 830008
  • 收稿日期:2021-05-02 修回日期:2021-09-08 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 杨兴耀(yangxy@xju.edu.cn)
  • 作者简介:(gliang@stu.xju.edu.cn)
  • 基金资助:
    国家自然科学基金(61862060,61966035,61562086);新疆维吾尔自治区教育厅项目(XJEDU2016S035);新疆大学博士科研启动基金项目(BS150257)

Hybrid Recommender System Based on Attention Mechanisms and Gating Network

GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao   

  1. School of Software,Xinjiang University,Urumqi 830008,China
  • Received:2021-05-02 Revised:2021-09-08 Online:2022-06-15 Published:2022-06-08
  • About author:GUO Liang,born in 1997,postgraduate.His main research interests include data mining and recommender system.
    YANG Xing-yao,born in 1984,Ph.D,associate professor, is a member of China Computer Federation.His main research interests include recommender system and trust computing.
  • Supported by:
    National Natural Science Foundation of China(61862060,61966035,61562086),Education Department Project of Xinjiang Uygur Autonomous Region(XJEDU2016S035) and Doctoral Research Start-up Foundation of Xinjiang University(BS150257).

摘要: 将用户评论和用户评分相结合来提升推荐系统的性能是推荐系统当前主流的研究方向,但是当用户评论数据稀疏时,现有的大多数推荐系统的性能会出现一定幅度的下降。针对这一问题,文中提出了一种结合注意力机制和门控网络形成的混合推荐系统(Attention Mechanism and Gating Network-based Recommendation System,AMGNRS)。该模型利用志趣相投的用户所产生的辅助评论来缓解用户评论的稀疏性问题,首先将多种混合注意力机制相结合来提高提取用户评论及评分的特征的效率,然后通过门控网络自适应地融合提取的特征并选出与用户偏好最相关的特征,最后利用神经因子分解机的高阶线性相互作用来推导评分预测。将所提模型与当前表现优异的模型在3个真实数据集上进行了对比实验,结果表明,所提模型显著地缓解了数据的稀疏性问题,验证了其有效性。

关键词: 门控网络, 推荐系统, 协同过滤, 语义信息, 注意力机制

Abstract: Combining user reviews with user ratings to improve the performance of recommender system is the current mainstream research direction of recommender system.However,when user review data is sparse,the performance of most existing recommender systems will degrade to a certain extent.To solve this problem,this paper proposes a hybrid recommendation system (AMGNRS),which combines attention mechanism and gating networking based recommendation system.It use auxiliary comments generated by like-minded users to alleviate the sparsity of user comments.Firstly,a variety of mixed attention mechanism are combined to impove the feature extracting efficiency of user comments and grading.Then features are extracted by adaptive fusion of gated network,and features most relevant to user preference are selected.Finally,the higher order linear interaction of the neural factorization machine is used to derive the score prediction.By comparing the model with the current model with excellent performance on three real data sets,the results show that the problem of data sparsity is significantly alleviated and the effectiveness of the model is verified.

Key words: Attention mechanism, Collaborative filtering, Gated network, Recommender system, Semantic information

中图分类号: 

  • TP391
[1] KIM D,PARK C,OH J,et al.Convolutional Matrix Factorization for Document Context-Aware Recommendation[C]//ACM Conference.ACM, 2016:233-240.
[2] HU J H,LI P.Collaborative Topic Regression Model Integrating Users’ Social Relations[J].Computer Engineering and Application,2018,54(19):151-157,171.
[3] HUANG L W,JIANG B T,LU S Y,et al.Review of recommender systems based on deep learning[J].Chinese Journal of Computers, 2018,41(7):1619-1647.
[4] HUANG J T,CHEN J B,CHEN P H.Recommendation algorithm combining preference degree and network structure[J].Computer Engineering and Applications,2019,55(10):9-15.
[5] GOMEZ-URIBE C A,HUNT N.The Netflix RecommenderSystem:Algorithms,Business Value,and Innovation[J].ACM Transactions on Management Information Systems,2015,6(4):1-19.
[6] COVINGTON P,ADAMS J,SARGIN E.Deep Neural Net-works for YouTube Recommrndation[C]//ACM Conference on Recommender Systems.ACM,2016:191-198.
[7] OKURA S,TAGAMI Y,ONO S,et al.Embedding-based News Recommendation for Millions of Users [C]//the 23rd ACM SIGKDD International Conference.ACM,2017:1933-1942.
[8] BAO Y,FANG H,ZHANG J.TopicMF:simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.2014:2-8.
[9] CHEN C,ZHANG M,LIU Y,et al.Neural Attentional Rating Regression with Review-level Explanions[C]//2018 World Wide Web Conference.2018:1583-1592.
[10] TAN Y,ZHANG M,LIU Y,et al.Rating-boosted latent topics:Understanding users and items with ratings and reviews[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.2016:2640-2646.
[11] WU L B,QUAN C,LI C L,et al.A Context Aware User-Item Representation Learning for Item Recommendation[J].ACM Transactions on Information Systems,2019,37(2):1-29.
[12] CHENG Z,DING Y,HE X,et al.A^3NCF:An Adaptive Aspect Attention Model for Rating Prediction[C]//Twenty-Seventh International Joint Conference on Artificial Intelligence.2018:3748-3754.
[13] LIU F,XUE S,WU J,et al.Deep Learning for Community Detection:Progress,Challenges and Opportunities[C]//International Joint Conference on Artificial Intelligence.2020:4981-4987.
[14] HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43st International ACM SIGIR Conference on Research and Development in Infrmation Retrieval.ACM,2020.
[15] XU K,BA J,KIROS R,et al.Show,Attend and Tell:NeuralImage Caption Generation with Visual Attention[C]//Interna-tional Conference on Machine Learning.2015:2048-2057.
[16] GONG Y,ZHANG Q.Hashtag recommendation using atten-tion-based convolutional neural network[C]//Proceedings of the 25th International Joint Conference on Artifificial Intelligence.2016:2782-2788.
[17] LIU D,LI J,DU B,et al.DAML:Dual Attention MutualLearning between Ratings and Reviews for Item Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference.ACM,2019:344-352.
[18] CHEN C,ZHANG M,LIU Y,et al.Neural Attentional Rating Regression with Review-level Explanations[C]//Proceedings of the 2018 World Wide Web Conference.2018:1583-1592.
[19] CHEN J,ZHUANG F,HONG X,et al.Attention-driven Factor Model for Explainable Personalized Recommendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval-SIGIR’18.2018:909-912.
[20] TAN Y,ZHANG M,LIU Y,et al.Rating-boosted latent topics:Understanding users and item items with ratings and reviews[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artifificial Intelligence.2016:2640-2646.
[21] LIU H T,WANG W.Neural Unified Review Recommendation with Cross Attention[C]//Preceedings of the 43rd International ACM SIGIR Conference on Reaearch and Development in Information Retrieval.2020:1789-1792.
[22] HUANG C,JIANG W,WU J,et al.Personalized Review Re-commendation based on User’Aspect Setiment[J].ACM Transa-ction on Internet Technology,2020(4):1-26.
[23] ZHENG L,NOROOZI V,YU P S.Joint Deep Modeling ofUsers and Items Using Reviews for Recommendation[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining.2017:425-434.
[24] DAUPHIN Y N,FAN A,AULI M,et al.Language modelingwith gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning(ICML’17).2017:933-941.
[25] CHEN H,LIN Z,DING G,et al.GRN:gated relation network to enhance convolutional neural networkfor named entity recognition[C]//Proceedings of the 33th AAAI Conference on Artificial Intelligence.2019:6236-6243.
[26] LI X,SONG J,GAO L,et al.Beyond RNNs:Positional Self-Attention with Co-Attention for Video Question Answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:8658-8665.
[27] HE X,CHUA T S.Neural Factorization Machines for SparsePredictive Analytics[C]//International ACM SIGIR Confe-rence.ACM,2017:355-364.
[28] SEO S,HUANG J,YANG H,et al.Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction[C]//Proceedings of the 11th ACM Conference on Recommender Systems.2017:297-305.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[3] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[4] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[5] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[6] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[7] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[10] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[11] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[12] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[13] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[14] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[15] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!