计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 185-190.doi: 10.11896/j.issn.1002-137X.2019.05.028
苏畅, 彭劭闻, 谢显中, 刘宁宁
SU Chang, PENG Shao-wen, XIE Xian-zhong, LIU Ning-ning
摘要: 基于位置的社交网络(Location-Based Social Networks,LBSN)为用户提供基于位置的服务,允许移动用户在社交网络中共享各自的位置以及与位置相关的信息。签到预测研究已经成为LBSN的重要且非常具有挑战性的任务。目前的预测技术大部分集中在以用户为中心的签到预测研究,而针对兴趣点签到预测的研究很少。文中主要研究以特定兴趣点为中心的签到预测。由于数据存在极端稀疏性的问题,运用传统的模型很难从数据中挖掘出用户的潜在签到规律。针对以特定兴趣点为中心的签到预测问题,提出了一种结合因子分解机和深度学习的新型网络模型(TSWNN),该模型融合了时间特征、空间特征、天气特征,基于因子分解机的思想处理高维稀疏向量,并采用全连接的隐藏层以挖掘用户在兴趣点的潜在签到行为模式,预测特定兴趣点的签到情况。在两个经典的LBSN数据集Gowalla和Brightkite上的实验结果表明了所提模型的优越性能。
中图分类号:
[1]SONG C,QU Z,BlUMM N,et al.Limits of Predictability inHuman Mobility[C]∥American Association for the Advancement of Science.2010:1018-1021. [2]TANG L A,ZHENG Y,YUAN J,et al.A framework of traveling companion discovery on trajectory data streams.ACM Transactions on Intelligent Systems and Technology,2013,5(1):1-34. [3]NOULAS A,SCELLATO S,LATHIA N,et al.Mining User Mobility Features for Next Place Prediction in Location-Based Services[C]∥2012 IEEE 12th International Conference on Data Mining.IEEE,2013:1038-1043. [4]WEI L Y,ZHENG Y,PENG W C.Constructing popular routes from uncertain trajectories[C]∥ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2012:195-203. [5]HE J,LI X,LIAO L,et al.Inferring a Personalized Next Point-of-Interest Recommendation Model with Latent Behavior Patterns[C]∥Thirtieth AAAI Conference on Artificial Intelligence.AAAI Press,2016:137-143. [6]FENG S,LI X,ZENG Y,et al.Personalized ranking metric embedding for next new POI recommendation[C]∥International Conference on Artificial Intelligence.AAAI Press,2015:2069-2075. [7]LI Y,ZHENG Y,ZHANG H,et al.Traffic prediction in a bike-sharing system[C]∥Sigspatial International Conference on Advances in Geographic Information Systems.ACM,2015. [8]ZHENG Y,LIU F,HSIEH H P.U-Air:When urban air quality inference meets big data[C]∥ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2013:1436-1444. [9]CAO J,XU S,ZHU X,et al.Effective fine-grained location prediction based on user check-in pattern in LBSNs.Journal of Network and Computer Applications,2018,108:64-75. [10]CHANG J,SUN E.Location3:How Users Share and Respondto Location-Based Data on Social[C]∥International Conference on Weblogs and Social Media.Barcelona,Catalonia,2011:74-80. [11]GAO H J,TANG J L,LIU H.Exploring social-historical ties on location-based social networks[C]∥Proceedings of the sixth International AAAI Conference on Weblogs and Social Media.Spain,2012:114-121. [12]GAO H,TANG J,HU X,et al.Exploring temporal effects for location recommendation on location-based social networks∥Proceedings of the 7th ACM Conference on Recommender Systems.ACM,2013:93-100. [13]GUO H,TANG R,YE Y,et al.DeepFM:A Factorization-Machine based Neural Network for CTR Prediction ∥Procee-dings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.IJCAI,2017:1725-1731. [14]RENDLE S.Factorization Machines[C]∥IEEE InternationalConference on Data Mining.IEEE,2011:995-1000. [15]ZHANG W,DU T,WANG J.Deep Learning over Multi-field Categorical Data:A Case Study on User Response Prediction∥Advances in Information Retrieval-38th European Conference on IR Research.ECIR,2016:45-57. [16]QU Y,CAI H,REN K,et al.Product-Based Neural Networks for User Response Prediction[C]∥2016 IEEE 16th Internatio-nal Conference on Data Mining (ICDM).IEEE,2016:1149-1154. [17]BENGIO Y,YAO L,ALAIN G,et al.Generalized DenoisingAuto-Encoders as Generative Models ∥27th Annual Conference on Neural Information Processing Systems.2013:899-907. [18]GRAEPEL T,BORCHERT T,HERBRICH R.Web-scale Bayes-ian click-through rate prediction for sponsored search advertising in Microsoft’s bing search engine[C]∥International Conference on on Machine Learning.Omnipress,2010. [19]HE X,BOWERS S,CANDELA J Q,et al.Practical Lessonsfrom Predicting Clicks on Ads at Facebook ∥Proceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2014:1-9. [20]MATTHEW R,EWA D,ROBERT R.Predicting Clicks:Estimating the Click-Through Rate for New Ads[C]∥Proceedings of the 16th International Conference on World Wide Web.WWW,2007:521-530. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[6] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[9] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[10] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[11] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[14] | 楚玉春, 龚航, 王学芳, 刘培顺. 基于YOLOv4的目标检测知识蒸馏算法研究 Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204 |
[15] | 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧. 基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法 SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm 计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106 |
|