计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 185-190.doi: 10.11896/j.issn.1002-137X.2019.05.028

• 人工智能 • 上一篇    下一篇

融合深度学习和因子分解机的兴趣点签到预测研究

苏畅, 彭劭闻, 谢显中, 刘宁宁   

  1. (重庆邮电大学计算机科学与技术学院 重庆400065)
  • 收稿日期:2018-04-24 修回日期:2018-06-30 发布日期:2019-05-15
  • 作者简介:苏 畅(1979-),女,博士,教授,CCF会员,主要研究方向为基于位置的社交网络分析和空间数据挖掘;彭劭闻(1995-),男,主要研究方向为空间数据挖掘、位置推荐与预测;谢显中(1966-),男,博士,教授,主要研究方向为移动通信技术、通信信号处理,E-mail:xiexzh@cqupt.edu.cn(通信作者);刘宁宁(1993-),女,硕士,主要研究方向为空间数据挖掘、位置推荐与预测。
  • 基金资助:
    国家自然科学基金(61271259),重庆市基础科学与前沿技术研究项目(CSTC2016jcyA0398,CTSC2011jjA40006,CTSC2012jjA40038),重庆教育委员会研究项目(KJ120501C)资助。

Study on Check-in Prediction Based on Deep Learning and Factorization Machine

SU Chang, PENG Shao-wen, XIE Xian-zhong, LIU Ning-ning   

  1. (College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
  • Received:2018-04-24 Revised:2018-06-30 Published:2019-05-15

摘要: 基于位置的社交网络(Location-Based Social Networks,LBSN)为用户提供基于位置的服务,允许移动用户在社交网络中共享各自的位置以及与位置相关的信息。签到预测研究已经成为LBSN的重要且非常具有挑战性的任务。目前的预测技术大部分集中在以用户为中心的签到预测研究,而针对兴趣点签到预测的研究很少。文中主要研究以特定兴趣点为中心的签到预测。由于数据存在极端稀疏性的问题,运用传统的模型很难从数据中挖掘出用户的潜在签到规律。针对以特定兴趣点为中心的签到预测问题,提出了一种结合因子分解机和深度学习的新型网络模型(TSWNN),该模型融合了时间特征、空间特征、天气特征,基于因子分解机的思想处理高维稀疏向量,并采用全连接的隐藏层以挖掘用户在兴趣点的潜在签到行为模式,预测特定兴趣点的签到情况。在两个经典的LBSN数据集Gowalla和Brightkite上的实验结果表明了所提模型的优越性能。

关键词: 签到预测, 深度学习, 兴趣点, 因子分解机

Abstract: Location-Based Social Networks (LBSN) provides users with location-based services,allowing mobile users to share their location and location-related information in social networks.The research of check-in prediction has become an important and very challenging task in LBSN.Most of the current prediction techniques mainly focus on user-centered check-in studies,while few researches are based on POI-centered.This paper focused on the check-in prediction of POI-centered.Due to the extreme sparseness of data,it is difficult to use the traditional model to dig out users’ potential check-in pattern from data.To solve the problem of prediction based on POI-centered,this paper proposed a novel network model(TSWNN) combining factorization machine and deep learning.This model fuses temporal features,spatial features and weather features,takes advantage of the idea of factorization machine to deal with high dimensional sparse vectors and applies fully-connected hidden layer to the model to dig out users’ potential check-in pattern and predict users’ check-in behavior on specific point of interest.The experimental results on two classical LBSN datasets(Gowalla and Brightkite) show the superior performance of the proposed model.

Key words: Check-in prediction, Deep learning, Factorization machine, Point of interest

中图分类号: 

  • TP183
[1]SONG C,QU Z,BlUMM N,et al.Limits of Predictability inHuman Mobility[C]∥American Association for the Advancement of Science.2010:1018-1021.
[2]TANG L A,ZHENG Y,YUAN J,et al.A framework of traveling companion discovery on trajectory data streams.ACM Transactions on Intelligent Systems and Technology,2013,5(1):1-34.
[3]NOULAS A,SCELLATO S,LATHIA N,et al.Mining User Mobility Features for Next Place Prediction in Location-Based Services[C]∥2012 IEEE 12th International Conference on Data Mining.IEEE,2013:1038-1043.
[4]WEI L Y,ZHENG Y,PENG W C.Constructing popular routes from uncertain trajectories[C]∥ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2012:195-203.
[5]HE J,LI X,LIAO L,et al.Inferring a Personalized Next Point-of-Interest Recommendation Model with Latent Behavior Patterns[C]∥Thirtieth AAAI Conference on Artificial Intelligence.AAAI Press,2016:137-143.
[6]FENG S,LI X,ZENG Y,et al.Personalized ranking metric embedding for next new POI recommendation[C]∥International Conference on Artificial Intelligence.AAAI Press,2015:2069-2075.
[7]LI Y,ZHENG Y,ZHANG H,et al.Traffic prediction in a bike-sharing system[C]∥Sigspatial International Conference on Advances in Geographic Information Systems.ACM,2015.
[8]ZHENG Y,LIU F,HSIEH H P.U-Air:When urban air quality inference meets big data[C]∥ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2013:1436-1444.
[9]CAO J,XU S,ZHU X,et al.Effective fine-grained location prediction based on user check-in pattern in LBSNs.Journal of Network and Computer Applications,2018,108:64-75.
[10]CHANG J,SUN E.Location3:How Users Share and Respondto Location-Based Data on Social[C]∥International Conference on Weblogs and Social Media.Barcelona,Catalonia,2011:74-80.
[11]GAO H J,TANG J L,LIU H.Exploring social-historical ties on location-based social networks[C]∥Proceedings of the sixth International AAAI Conference on Weblogs and Social Media.Spain,2012:114-121.
[12]GAO H,TANG J,HU X,et al.Exploring temporal effects for location recommendation on location-based social networks∥Proceedings of the 7th ACM Conference on Recommender Systems.ACM,2013:93-100.
[13]GUO H,TANG R,YE Y,et al.DeepFM:A Factorization-Machine based Neural Network for CTR Prediction ∥Procee-dings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.IJCAI,2017:1725-1731.
[14]RENDLE S.Factorization Machines[C]∥IEEE InternationalConference on Data Mining.IEEE,2011:995-1000.
[15]ZHANG W,DU T,WANG J.Deep Learning over Multi-field Categorical Data:A Case Study on User Response Prediction∥Advances in Information Retrieval-38th European Conference on IR Research.ECIR,2016:45-57.
[16]QU Y,CAI H,REN K,et al.Product-Based Neural Networks for User Response Prediction[C]∥2016 IEEE 16th Internatio-nal Conference on Data Mining (ICDM).IEEE,2016:1149-1154.
[17]BENGIO Y,YAO L,ALAIN G,et al.Generalized DenoisingAuto-Encoders as Generative Models ∥27th Annual Conference on Neural Information Processing Systems.2013:899-907.
[18]GRAEPEL T,BORCHERT T,HERBRICH R.Web-scale Bayes-ian click-through rate prediction for sponsored search advertising in Microsoft’s bing search engine[C]∥International Conference on on Machine Learning.Omnipress,2010.
[19]HE X,BOWERS S,CANDELA J Q,et al.Practical Lessonsfrom Predicting Clicks on Ads at Facebook ∥Proceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2014:1-9.
[20]MATTHEW R,EWA D,ROBERT R.Predicting Clicks:Estimating the Click-Through Rate for New Ads[C]∥Proceedings of the 16th International Conference on World Wide Web.WWW,2007:521-530.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[14] 楚玉春, 龚航, 王学芳, 刘培顺.
基于YOLOv4的目标检测知识蒸馏算法研究
Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4
计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204
[15] 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧.
基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法
SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm
计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!