计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 72-75.

• 智能计算 • 上一篇    下一篇

基于多智能体的海上垂直补给规划仿真研究

董鹏, 吴翀, 余鹏, 文昊林   

  1. (海军工程大学管理工程与装备经济系 武汉430033)
  • 出版日期:2019-11-10 发布日期:2019-11-20
  • 通讯作者: 吴翀(1995-),男,硕士生,主要研究领域为物流工程,E-mail:281078572qq.com。
  • 作者简介:董鹏(1980-),男,副教授,硕士生导师,主要研究领域为项目管理、装备采购管理。

Simulation Research on Offshore Vertical Replenishment Planning Based on Multi-agent

DONG Peng, WU Chong, YU Peng, WEN Hao-lin   

  1. (Department of Management Engineering and Equipment Economic,NavalUniversity of Engineering,Wuhan 430033,China)
  • Online:2019-11-10 Published:2019-11-20

摘要: 为了优化编队内海上垂直补给规划问题,制定了垂直补给运输方案。首先,分析了海上垂直补给的过程及可能出现的物资排队情况;然后,运用多智能体系统对海上补给过程进行了仿真建模,分别建立了“补给舰”“接收舰”“直升机” 3种智能体,构建了基于多智能体的海上垂直补给规划模型。最后,分别对平时和战时两种环境下的垂直补给规划问题分别进行了仿真实验和分析,仿真结果验证了仿真模型的合理性。

关键词: 垂直补给, 多智能体, 仿真, 规划, 海上补给

Abstract: In order to optimize the planning of vertical replenishment at sea in formation,this paper developed the optimal vertical replenishment transportation scheme.Firstly,the process of vertical replenishment at sea and the possible situation of material queuing are analyzed.Then,the multi-agent system is used to simulate and model the process of marine replenishment,and the replenishment ship,receiving ship and helicopter are established respectively.Three kinds of agents are used to build a vertical replenishment planning model at sea based on the multi-agent system.The simulation experiments and analysis of the vertical replenishment planning problems in peacetime and wartime were carried out respectively.The simulation results verify the rationality of the simulation model.

Key words: Multi-agent, Planning, Simulation, Underway replenishment, Vertical replenishment

中图分类号: 

  • TP391.9
[1]HARDGRAVE,STEPHEN W.Determining the Feasibility ofReplenishing a Dispersed Carrier Battle Group [D].California:Naval Postgraduate School,1989.
[2]余鹏,何学军.基于蚁群算法的舰艇编队海上补给路径规划方法 [J].海军工程大学学报,2014(2):108-112.
[3]秦芙蓉,罗朝晖,董鹏.基于GTSP问题的舰艇编队海上补给规划[J].兵工自动化,2018(10):28-31.
[4]DUNN J S.Scheduling Underway Replenishment as a Generalized Orienteering Problem [D].California:Navy Postgraduate School,1992.
[5]BROWN G G,DEGRANGE W C,PRICE W L.Scheduling combat logistics force replenishments at sea for the US Navy[J].Navy Research Logistics,2017(8):611-693.
[6]曹守启,邵娇云,陈莹,等.带有等待时间窗的补给运输船航路规划[J].计算机工程及应用,2015,51(1):243-249.
[7]岳奎志,韩维,于承军,等.舰艇编队物资海上分段补给的系统动力学模型 [J].系统仿真学报,2013,25(3).
[8]PATTERSON B L.An analytical approach to the operation of replenishment at sea[D].California:Naval Postgraduate School,1968.
[9]WAGGONER M H.An analytical model for application to the operation of replenishment at sea[D].California:Naval Postgraduate School,1967.
[10]BEVERIDGE J D.An analytical and computer simulation approach to the problem of replenishing task forces at sea[D].California:Naval Postgraduate School,1970.
[11]李杨,徐峰,谢光强,等.多智能体技术发展及其应用综述[J].计算机工程与应用,2018,54(9):13-21.
[1] 罗熊丰, 翟象平.
基于空间运动约束的无人机碰撞回避规划
Collision Avoidance Planning for Unmanned Aerial Vehicles Based on Spatial Motion Constraints
计算机科学, 2022, 49(9): 194-201. https://doi.org/10.11896/jsjkx.210700107
[2] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[3] 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军.
基于多智能体强化学习的端到端合作的自适应奖励方法
Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning
计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100
[4] 陈莹, 郝应光, 王洪玉, 王坤.
基于局部梯度强度图的动态规划检测前跟踪算法
Dynamic Programming Track-Before-Detect Algorithm Based on Local Gradient and Intensity Map
计算机科学, 2022, 49(8): 150-156. https://doi.org/10.11896/jsjkx.210700135
[5] 郭拯危, 付泽文, 李宁, 白澜.
高分辨率斜视聚束SAR回波仿真加速算法研究
Study on Acceleration Algorithm for Raw Data Simulation of High Resolution Squint Spotlight SAR
计算机科学, 2022, 49(8): 178-183. https://doi.org/10.11896/jsjkx.210600066
[6] 王兵, 吴洪亮, 牛新征.
基于改进势场法的机器人路径规划
Robot Path Planning Based on Improved Potential Field Method
计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020
[7] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[8] 李瑭, 秦小麟, 迟贺宇, 费珂.
面向多无人系统的安全协同模型
Secure Coordination Model for Multiple Unmanned Systems
计算机科学, 2022, 49(7): 332-339. https://doi.org/10.11896/jsjkx.210600107
[9] 高文龙, 周天阳, 朱俊虎, 赵子恒.
基于双向蚁群算法的网络攻击路径发现方法
Network Attack Path Discovery Method Based on Bidirectional Ant Colony Algorithm
计算机科学, 2022, 49(6A): 516-522. https://doi.org/10.11896/jsjkx.210500072
[10] 黄国兴, 杨泽铭, 卢为党, 彭宏, 王静文.
利用粒子滤波方法求解数据包络分析问题
Solve Data Envelopment Analysis Problems with Particle Filter
计算机科学, 2022, 49(6A): 159-164. https://doi.org/10.11896/jsjkx.210600110
[11] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[12] 阙华坤, 冯小峰, 郭文翀, 李健, 曾伟良, 范竞敏.
基于模糊双目标规划的充电站布局模型
Development of Electric Vehicle Charging Station Distribution Model Based on Fuzzy Bi-objective Programming
计算机科学, 2022, 49(6A): 753-758. https://doi.org/10.11896/jsjkx.210700225
[13] 谭任深, 徐龙博, 周冰, 荆朝霞, 黄向生.
海上风电场通用运维路径规划模型优化及仿真
Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms
计算机科学, 2022, 49(6A): 795-801. https://doi.org/10.11896/jsjkx.210400300
[14] 罗俊仁, 张万鹏, 陆丽娜, 陈璟.
即时策略博弈在线对抗规划方法综述
Survey on Online Adversarial Planning for Real-time Strategy Game
计算机科学, 2022, 49(6): 287-296. https://doi.org/10.11896/jsjkx.210600168
[15] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!